CIRCULAR:-

Attention of the Principals of the Affiliated Colleges, Directors of the recognized Institutions in Science & Technology Faculty is invited to the syllabus uploaded by Academic Authority Unit which was accepted by the Academic Council at its meeting held on 11th May, 2017 vide item No. 4.181 relating to the revised syllabus as per (CBCGS) for Bachelor of Engineering (Printing & Packaging Technology) w.e.f. 2016-17.

They are hereby informed that the recommendations made by the Dean, Faculty of Science and Technology have been accepted by the Academic Council at its meeting held on 26th July, 2019 vide item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCGS) for the B.E. Degree - Printing & Packaging Technology (Sem.VII & VIII) has been brought into force with effect from the academic year 2019-20, accordingly. (The same is available on the University’s website www.mu.ac.in).

MUMBAI – 400 032
14th August, 2019
To
The Principals of the affiliated Colleges, and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.41/26/07/2019

No. UG/ 66-A of 2019-20

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,
2) The Director, Board of Examinations and Evaluation,
3) The Director, Board of Students Development,
4) The Co-ordinator, University Computerization Centre,

(Dr. Ajay Deshmukh)
REGISTRAR
Syllabus for Approval

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Heading</th>
<th>Particulars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Title of the Course</td>
<td>BE Painting & Packaging Technology</td>
</tr>
<tr>
<td>2</td>
<td>Eligibility for Admission</td>
<td>T.E. pass or having passed in 5 semesters of BE</td>
</tr>
<tr>
<td>3</td>
<td>Passing Marks</td>
<td>401</td>
</tr>
<tr>
<td>4</td>
<td>Ordinances / Regulations (if any)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>No. of Years / Semesters</td>
<td>4 yrs / 8 sem</td>
</tr>
<tr>
<td>6</td>
<td>Level</td>
<td>P.G. / U.G. / Diploma / Certificate (Strike out which is not applicable)</td>
</tr>
<tr>
<td>7</td>
<td>Pattern</td>
<td>Yearly / Semester (Strike out which is not applicable)</td>
</tr>
<tr>
<td>8</td>
<td>Status</td>
<td>New / Revised (Strike out which is not applicable)</td>
</tr>
<tr>
<td>9</td>
<td>To be implemented from Academic Year</td>
<td>From Academic Year 2019-20</td>
</tr>
</tbody>
</table>

Date: 15-07-19

Signature:

Name of BOS Chairperson / Dean: Dr. S. K. Wkarandhe
UNIVERSITY OF MUMBAI

Bachelor of Engineering

Printing & Packaging Technology

Syllabus Details (Rev-2016) from Academic year 2016-17

Final Year Syllabus with effect from AY 2019-20

under

FACULTY OF TECHNOLOGY

As per Choice Based Credit and Grading System

with effect from the AY 2016–17
Dean, Faculty of Science and Technology

Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development. Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs) and give freedom to affiliated Institutes to add few (PEOs). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner’s learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology and developed curriculum accordingly.

In addition to outcome-based education, semester-based credit and grading system is also introduced to ensure quality of engineering education. Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scales to grade learner’s performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc. Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017- 18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande

Dean (I/c) Faculty of Science and Technology,
Member - Academic Council,
University of Mumbai, Mumbai
<table>
<thead>
<tr>
<th>Sem</th>
<th>Paper Code</th>
<th>Paper Name</th>
<th>Assessment Method</th>
<th>Teaching Scheme (hr/wk)</th>
<th>Credits Assigned</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>Theory Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P Total</td>
<td></td>
<td>T1 T2 Av.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal Assessment</td>
<td></td>
<td>End Sem Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Termwork</td>
<td></td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral</td>
<td></td>
<td>Total Marks</td>
</tr>
<tr>
<td>VII</td>
<td>PPC701</td>
<td>Laws, Regulations & Sustainability in Packaging</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>PPC702</td>
<td>Packaging Distribution & Logistics</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>PPC703</td>
<td>Financial & Marketing Management</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>PPC704</td>
<td>Total Quality Management</td>
<td>Theory</td>
<td>2 - -</td>
<td>2 - - 2</td>
<td>15 15 15 60</td>
</tr>
<tr>
<td></td>
<td>PPC705</td>
<td>Project Management & Entrepreneurship</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>PPDE701X</td>
<td>Department Elective – II</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>ILO701X</td>
<td>Institutional Level Optional Course</td>
<td>Theory</td>
<td>3 - -</td>
<td>3 - - 3</td>
<td>20 20 20 80</td>
</tr>
<tr>
<td></td>
<td>PPL701</td>
<td>Packaging Distribution & Logistics Laboratory</td>
<td>TW/Or</td>
<td>- 3 - 1.5 1.5</td>
<td>- - - -</td>
<td>25 - 25 50</td>
</tr>
<tr>
<td></td>
<td>PPDEL701X</td>
<td>Department Elective – II Laboratory</td>
<td>TW/Or</td>
<td>- 3 - 1.5 1.5</td>
<td>- - - -</td>
<td>25 - 25 50</td>
</tr>
<tr>
<td></td>
<td>PPT701</td>
<td>Printing & Packaging Costing Tutorial</td>
<td>TW</td>
<td>- 2 - 2 2</td>
<td>- - - -</td>
<td>25 - - 25</td>
</tr>
<tr>
<td></td>
<td>PPP701</td>
<td>Mini-Project</td>
<td>TW/Or</td>
<td>- 4 - 2 2</td>
<td>- - - -</td>
<td>25 - - 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 2 10 20 2 5</td>
<td>27 - - 135</td>
<td>540 - 100 - 75 850</td>
</tr>
</tbody>
</table>

Department Electives – II:
1. Advanced Food Packaging
2. Advanced Industrial Products Packaging
3. Labelling Technology

Institute Level Optional Course-I:
- ILO7011 Product Lifecycle Management
- ILO7013 Management Information System
- ILO7015 Operation Research
- ILO7017 Disaster Management and Mitigation Measures
- ILO7019 Development Engineering

Institute Level Optional Course-II:
- ILO7012 Reliability Engineering
- ILO7014 Design of Experiments
- ILO7016 Cyber Security and Laws
- ILO7018 Energy Audit and Management

SEMESTER – VIII

<table>
<thead>
<tr>
<th>Sem</th>
<th>Paper Code</th>
<th>Paper Name</th>
<th>Assessment Method</th>
<th>Teaching Scheme (hrs)</th>
<th>Credits Assigned</th>
<th>Examination Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Theory Marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Th Pract</td>
<td>Th Pract Total</td>
<td>T1 T2 Av.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internal Assessment</td>
<td></td>
<td>End Sem Exam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Termwork</td>
<td></td>
<td>Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oral</td>
<td></td>
<td>Total Marks</td>
</tr>
<tr>
<td>VIII</td>
<td>PPC801</td>
<td>Industrial Training & Project*</td>
<td>TW/Or</td>
<td>- 5x8=40</td>
<td>20 20</td>
<td>50 - 100 50 200</td>
</tr>
</tbody>
</table>

* Industrial Training and Project work should be of 24 weeks. (Learners load: 8 hours a day and 5 days a week translates into 40 contact hours per week)

Workload of Teacher: Contact hours for project guidance – One hour per Industry per week.
GENERAL GUIDELINES FOR ALL COURSES:

Theory Examination (End Semester Examination) for 80 Marks:
1. Question paper will comprise of 6 questions, each carrying 20 marks.
2. Total 4 questions are needed to be solved.
3. Question No.1 will be compulsory and based on entire syllabus.
4. Remaining questions will be randomly selected from all the modules.

Internal Assessment for 20 Marks:
Compulsory Test-1 will be conducted (on minimum 40% of curriculum) and Test-2 can be class test (on minimum 60% of curriculum) or assignment on live problems or course project.

Theory Examination (End Semester Examination) for 60 Marks:
1. Question paper will comprise of 6 questions, each carrying 15 marks.
2. Total 4 questions are needed to be solved.
3. Question No.1 will be compulsory and based on entire syllabus.
4. Remaining questions will be randomly selected from all the modules.

Internal Assessment for 15 Marks:
Compulsory Test-1 will be conducted (on minimum 40% of curriculum) and Test-2 can be class test (on minimum 60% of curriculum) or assignment on live problems or course project.

Termwork for Laboratory / Tutorial:
The distribution of term work marks (in courses not mentioned) is as follows:

Assignments: 10 Marks
Practical Journal/Tutorials & Continuous Assessment: 10 Marks
Attendance: 05 Marks
Course Code	Course Name	Credits
PPC701 | Laws, Regulations & Sustainability in Packaging | 3

Objectives:
1. To learn various rules and regulations with respect to packaging in India and their impact in the domestic market
2. To understand the International laws with relation to Packaging including export market
3. To understand concepts of sustainable development
4. To study metrics for sustainable packaging & LCA
5. To study various waste management systems
6. To study biopolymers & biobased polymers

Outcomes: At the end of the course, learners should be able to;
1. Summarize the rules and regulations with respect to packaging in India and their impact in the domestic market.
2. Identify and compare the international laws with relation to packaging
3. Describe the need & scope of sustainability in a process, product/package or equipment.
4. Describe & analyze the metrics & LCA for packaging sustainability.
5. State and explains the various waste management systems.
6. Describe the need of biopolymers & biobased polymers in sustainable economy.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module - 1: Indian Regulatory System</td>
<td>06</td>
</tr>
<tr>
<td>2.</td>
<td>Module - 2: International Laws</td>
<td>07</td>
</tr>
<tr>
<td></td>
<td>CE Marking, EU-REACH Regulations in packaging, RoHS (Restriction on Hazardous Substances), Uniform Weights and Measures Law, Details of Violations, offences, Penalties under various sections, ISO 14000 Environment Management System, IMDG (International Maritime for Dangerous Goods), EU Directives, Various storage requirements of Products, Specifications of Raw Materials used, IS Specifications with respect to packaging and Packaging Materials</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Module – 3 : Food Packaging Requirements & Others</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>FSSAI, Packaging requirements under PFA, Declaration and Labelling, PFA Enforcement methods, Fruit Products Order (FPO), Meat Food Products Order (MFPO), Agricultural Grading and Marking Rules (AGMARK), Edible Oil Packaging (Regulatory) Order.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Module 4 - Introduction to Sustainability</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>Sustainable Development & Processes, Need Today, Three Pillars of Sustainability & their effects on sustainable growth - Relation with environment waste management</td>
<td></td>
</tr>
<tr>
<td>Texts / References:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Rule Book, Govt. Of India.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Details</td>
<td>Hrs</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-----</td>
</tr>
</tbody>
</table>
| 1. | Module 1 - Introduction
Basic concept of Unit Load Devices (ULD) - Types of ULD - Examples & Case Studies. | 04 |
| 2. | Module 2 – Palletization
Pallets as ULD - Wood Pallet Terminologies - Pallet Classification, Structures & Applications as per standards.
Introduction to plastic & non-plastic pallets - Advantages & Applications. | 05 |
| 3. | Module 3 – Containerization
Containers as ULD - History & Classification of containers - Intermodal & Multimodal Containers - Container Markings & Placarding - Concept of Rating, Taremass & Payload - Air & Marine Containers - Reefer Containers. | 09 |
| 4. | Module 4 – Introduction to Logistics & Supply Chain Management
Introduction to Logistics - Components & Activities of Logistics - Inward & Outward Logistics. Introduction to Supply Chain Management (SCM) - Comparison of Logistics & Supply Chain Management. Product Package Life Cycle & SCM activities. | 06 |
| 5. | Module 5 – Distribution Channels & Transport Management
Introduction to Distribution Channels - Types & levels of Channels – Marketing Systems - Choice of Distribution Channels.
Principles of Transportation Functions - Transportation Management - Legal Types & Modes.
Introduction to INCO Terms. | 06 |
| 6. | Module 6 - Material Handling & Storage
Introduction to Inventory Management - Classes of Inventories - Inventory Control.
Concept of Warehouse - Functions & Types - Warehouse Designs & Structures | 06 |
Texts / References:

1. Integrated packaging system for Transportation and Distribution – Charles webbling
2. Design and Technology of package Decoration for the consumer Market – Geoff A. Giles.
4. Dangerous Goods Regulations – International Air Transport Association (Canada)
6. Supply Chain Management Strategy, Planning, and operations, Sunil Chopra and Peter Meindl
7. Materials Management & Purchasing, Ammer D.S. Taraporawala
Course Code
PPC703

Course Name
Financial & Marketing Management

Credits
3

Objectives:
1. To get an overview of Indian financial system, instruments and market.
2. To learn basic concepts of value of money, returns and risks, corporate finance, working capital and its Management.
3. To acquire knowledge about sources of finance, capital structure, dividend policy.
4. To get introduced to the basic elements of marketing management.
5. To understand various marketing concepts and get acquainted with contemporary marketing practices.

Outcomes:
At the end of the course, learners should be able to;
1. To analyse the Indian finance system and corporate finance.
2. To take investment, finance as well as dividend decisions.
3. To choose the market based on product deliverables.
4. To select the marketing mix for a product.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting. Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance - Investment Decision, Financing Decision, and Dividend Decision. Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Sources of Short-Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance.</td>
<td>07</td>
</tr>
<tr>
<td>3.</td>
<td>Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; etc. Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value (NPV), Profitability Index, IRR. Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity’s Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities.</td>
<td>07</td>
</tr>
<tr>
<td>4.</td>
<td>Introduction to Marketing Concept, Evolution of Marketing from Production to Sustainability & Customer Orientation. Understanding the Basics: Concept of Need, Want and Demand, Concept of Product and</td>
<td>05</td>
</tr>
</tbody>
</table>
| **5.** | **Market Research & Marketing**, Information Systems and Demand Forecasting and Market Potential, Analysis, Consumer Buying Process & Organizational Buying Behaviour
Pillars of Marketing - Market Segmentation, Target Marketing, Positioning & Differentiation.
Marketing Mix and Product Decisions – Product Life Cycle & Brand
New Product Development Process and Pricing Decisions |
|---|---|
| **6.** | **Distribution Decisions** – Logistics & Channel Decisions (Retail, E-commerce, etc.)
Promotion Decisions – Integrated Marketing Communications Concept: Advertising, Sales Promotions, Public Relations, Direct Marketing; Communication Tools
Personal Selling & Sales Management.
Overview of Marketing Strategies:
BCG, Ansoff, GE, Shell Model, Porter Generic Model, 5 Forces Model, PLC, 7s Model of Marketing, Value Chain Model
Case studies / Presentations |

Texts / References:

5. Marketing Management (A South Asian Perspective) by Philip Kotler, Kevin Lane Keller, Abraham Koshy & Mithileshwar Jha, Pearson Education
6. Marketing Management by R. Varshney, S. Chand
8. Basic Marketing by Jr., William Perreault, Joseph Cannon and E. Jerome McCarthy
Course Code | Course Name | Credits
--- | --- | ---
PPC704 | Total Quality Management | 2

Objectives:
1. To understand various principles of TQM to achieve quality.
2. To learn various statistical approaches for Quality control
3. To understand various TQM tools
4. To learn the importance of ISO and Quality systems
5. To learn to Implement quality tools for continuous improvement

Outcomes: At the end of the course, learners should be able to;
1. Enlist various principles of TQM
2. Implement various philosophies of TQM
3. Use statistical approach for quality control
4. List and explain various TQM Tools
5. Explain importance of ISO and quality systems
6. Implement quality tools for continuous improvement.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Module 2 – Principles and Philosophies
Leadership – Strategic quality planning, Quality Councils – Employee involvement – Motivation, Empowerment, Team and Teamwork, Quality circles Recognition and Reward, Performance appraisal – Continuous process improvement – PDCA cycle, 5S, Kaizen – Supplier partnership – Partnering, Supplier selection, Supplier rating. Overview of the contributions of Deming, Juran Crosby, Feigenbaum, Ishikawa, Taguchi techniques</td>
<td>07</td>
</tr>
</tbody>
</table>

Texts / References:
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC705</td>
<td>Project Management and Entrepreneurship</td>
<td>3</td>
</tr>
</tbody>
</table>

Objectives:
1. To get acquainted with various aspects of project management
2. To study different scheduling and planning techniques used in the industry
3. To study various applications of inventory and project management with respect to the Printing and Packaging Industry.
4. To study Life-cycle of the project
5. To develop and strengthen entrepreneurial quality in students.
6. To impart basic entrepreneurial skills and understandings to run a business efficiently and effectively.

Outcomes: At the end of the course, learners should be able to:
1. Describe the fundamental concepts in Project management
2. Analyze the various scheduling and planning techniques
3. Understand and apply suitable strategy for any specific project
4. Apply project management principles in business situations to optimize resource utilization and time.
5. Demonstrate skills needed to run a successful business.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module 1 - Introduction to Project Management</td>
<td>04</td>
</tr>
<tr>
<td>2.</td>
<td>Module 2 – Planning and Budgeting</td>
<td>06</td>
</tr>
<tr>
<td>3.</td>
<td>Module 3 – Scheduling and Resource allocation</td>
<td>08</td>
</tr>
<tr>
<td>4.</td>
<td>Module 4 - Project control and conclusion</td>
<td>06</td>
</tr>
<tr>
<td>5.</td>
<td>Module 5 – Entrepreneurial competence</td>
<td>03</td>
</tr>
<tr>
<td>6.</td>
<td>Module 6 - Business plan Preparation</td>
<td>04</td>
</tr>
</tbody>
</table>
7. **Module 7 - Launching and Management of Small business**

Texts / References:

3. Samuel J.Mantel et al, “Project management”, Wiley India
7. S.S.Khanka, Entrepreneurial Development, S. Chand and Company Limited
Course Code: PPDE7011
Course Name: Advanced Food Packaging

Credits: 3

Objectives:
1. To get acquainted with various permeation measurement techniques.
2. To study overall & specific migration.
3. To study various shelf life models.
4. To study filling systems for liquid & solid food products.
5. To study the retort & aseptic processes for microbial destruction in packaged foods.

Outcomes: At the end of the course, learners should be able to:
1. Choose a packaging material with suitable permeability value as required.
2. Describe & perform the migration analysis for packaging materials.
3. Evaluate the shelf life of packaged food product.
4. Describe the filling system & suggest a suitable one on the basis of product need.
5. Apply concepts of microbial inactivation for retort & aseptic packaging.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
</table>
| 1. | Module 1 - Permeation of Gases through Packaging Materials
Revision of diffusion, Fick’s Law & derivation Permeation Rate Equation - Experimental measurement of gas permeability - Estimation of permeability, diffusion & solubility coefficient. | 06 |
| 2. | Module 2 - Migration Studies
Revision of Migration Processes - Kinetic & Thermodynamic approach - Migration Models - Estimation of partition & diffusion co-efficient - Estimation of worst case & safe level addition | 06 |
| 3. | Module 3 - Retort & Aseptic Packaging
Concept of Aseptic, Retort & Hot filling - Understanding microbial growth curve - Thermal destruction of micro-organisms & food quality - Thermal Process Designing - In-container pasteurization & sterilization - materials used for retorting - Flow process & Systems for aseptic packaging - Sterilization techniques | 06 |
| 4. | Module 4 – Shelf Life Studies
Revision of Shelf Life Concepts - Temperature dependence in chemical kinetics - Water activity & its effect - Shelf life models based on microbial growth, migration, for constant & variable driving forces for oxygen & moisture | 08 |
| 5. | Module 5 - Filling Systems & Microwavable Packaging
Introduction to various filling systems - Classification of filling systems for liquid & solid products - Types of Fillers - Concept of microwave - Modes of Interaction - Challenges | 05 |
<table>
<thead>
<tr>
<th>Microwavable Food Packaging Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Module 6 - Active & Intelligent Packaging & Innovations in Food Packaging</td>
</tr>
<tr>
<td>Concept of Active & Intelligent Packaging - Active Absorbing & Releasing Systems, other Systems - Intelligent Packaging Framework & smart packaging devices - Legal aspects of intelligent packaging - Case studies of Innovative food packaging designs & MAP products</td>
</tr>
</tbody>
</table>

Texts / References:

1. D. S. Lee, "Food Packaging Science & Technology", CRC Press
2. Han, “Innovations in Food Packaging”, Academic Press
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
<th>Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Module - 1: Industrial Packaging Materials & Corrosion Prevention</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industrial Packaging Papers (Speciality), Films and Foils. Various</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corrosion Prevention Coatings for metallic surfaces. Estimation of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>desiccant requirements for a industrial package. Numerical Problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VCI Papers – Properties and applications.</td>
<td>06</td>
</tr>
<tr>
<td>2.</td>
<td>Module - 2: Wood Package Design:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Structural design softwares (CAD) for designing of wooden packages -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design examples of a wooden box and crate as per Indian standard –</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concepts of blocking and Bracing - Case studies to learn the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>importance of package dimensions with respect to product fitment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inside the package and distribution chain.</td>
<td>04</td>
</tr>
<tr>
<td>3.</td>
<td>Module – 3: Corrugated Fibreboard Box Design:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Implications of CFB Box design for transport packaging w.r.t internal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and external box dimensions. Numerical Problems on CFB Box Dimensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for an industrial Product. Concept of Cube Utilization and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>associated case studies/numerical problems.</td>
<td>06</td>
</tr>
<tr>
<td>4.</td>
<td>Module - 4: Internal Fitment Design & Reinforcement:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Case studies / Numerical problem on Internal Fitment design for</td>
<td></td>
</tr>
<tr>
<td></td>
<td>industrial packages like electronic products w.r.t paper and plastic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Examples of designs of corner supports, Pads, Liners/collars, Trays,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slotted Partitions, etc.</td>
<td>04</td>
</tr>
</tbody>
</table>
5. **Module – 5: Special/Ancillary Packaging Materials:**
 Air Bubble Cushions – Manufacture, properties and applications, Paper Sacks – Manufacture, properties, applications and testing, Dunnage Bags – properties and applications, E-fluted Cartons, Anti-Counterfeit/security features, Reinforcements, Bundling, Unitizing (Stretch/Shrink wrapping) and Easy opening devices. Criteria for selection of reinforcement materials like straps – Numerical problems.

6. **Module - 6: Industrial Product Packaging Considerations:**
 Packaging of Chemicals (Cement, Fertilizers, Pesticides/Insecticides, Petroleum products and Others) Packaging of Handicrafts, Textiles, Toys, Jewelry. Bulk packaging systems for pharmaceutical drugs and edible nuts/spices

Texts / References:

1. Friedman W.F. and J.J. Kipness, Industrial Products packaging, John Wiley & Sons
2. Klimchuck, Packaging Design & Engineering, Wiley
6. Wooden Containers/crates, Corrugated board/boxes, marking : Specification and Testing as per Indian Standards
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPDE7013</td>
<td>Labelling Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Objectives

1. To study the different types of labels, their features and manufacturing process.
2. To understand the process of printing, finishing and applying labels on the packs.
3. To study the types of labels and materials used on the different packages.
4. To study the designing of the labels of all types along with the compensations.
5. To study the new trends in the labelling industry.

Outcomes: At the end of the course, learners will be able to;

1. Explain and compare the different types of labels, their features and manufacturing process.
2. Explain the process of printing, finishing and applying labels on the packs.
3. Select a type of label and material based on the package type.
4. Design the labels of all types along with the compensations.
5. Describe the new trends in the labelling industry.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1. | **Module - 1: Introduction**
| | 08 |
| 2. | **Module - 2: Adhesive labels**
2.1 Plain Labels
Glued on labels- materials and properties, pre-gummed labels. Printing and finishing, label applicator - machines and workflow. Direct mail address labels with variable data printing.
2.2 Pre adhesive Labels
| | 04 |
and machines, die cutting. Label rewinding, applicator types - single and multi label applicator, applicator fitted with over printer, fixing. New developments - recycling compatibility, liner processing, linerless labels.

3. **Module - 3:**
 3.1 **Shrink Sleeve labels**

 3.2 Stretch sleeve labels

4. **Module - 4: Other types of labels**
 In mould labels-materials, properties, Printing and finishing, label application process. Thermal transfer labels, reversible, tie on and insert labels, tags. Specific products for the label types.

5. **Module – 5: Trends**
 Customized labels with variable data printing. Smart and intelligent labels – functions - security, tracing, safety and preservation of the product, convenience, information transfer. Some of the technologies – RFID, thermo-chromic inks, barcodes. Online shopping and labels.

Texts / References:
1. Technical Hand book of Self adhesive labels, FINAT
2. Kit L. Yam, Wiley encyclopedia of Packaging Technology,2010
Course Code | Course Name | Credits |
-------------|---|---------|
PPL701 | Packaging Distribution & Logistics Laboratory | 1.5

Objectives:
1. To study Unit Load Devices & their applications
2. To learn the various tests to be performed for transport worthiness of a package.

Outcomes: At the end of the course, learners should be able to;
1. Evaluate the usage & application of Unit Load Devices.
2. To explain and perform transport worthiness tests for a given package.
3. Choose the test to be performed on a package based on the transportation mode and its requirements.

Term Work: (Comprises both a & b)

a. **List of experiments (Minimum 8 to be conducted):**
 1. Compression Test
 2. Vibration Test
 3. Drop Test for CFB Boxes
 4. Drop Test for Drums
 5. Inclined Impact Test
 6. Stack Test
 7. Rolling Test
 8. Pallet Performance Test

b. **Assignments:** Minimum two assignments to be given on different principles of transport trials used in the industry. *(Note: Preferably the assignments shall be given based on live problems. Assignments may also include objective tests, presentation, etc.)*

Oral Examination:
To gauge the understanding of the subject, an Oral examination will be conducted at the end of the term for 25 marks.
Objectives:
1. To get acquainted with various permeation measurement techniques.
2. To study overall & specific migration.
3. To study various shelf life models.
4. To study filling systems for liquid & solid food products.
5. To study the retort & aseptic processes for microbial destruction in packaged foods.

Outcomes: At the end of the course, learners should be able to:
1. Choose a packaging material with suitable permeability value as required.
2. Describe & perform the migration analysis for packaging materials.
3. Evaluate the shelf life of packaged food product.
4. Describe the filling system & suggest a suitable one on the basis of product need.
5. Apply concepts of microbial inactivation for retort & aseptic packaging.

Term Work: (Comprises both a & b)
a. List of experiments (Minimum 8 to be conducted):
 10. Shelf Life evaluation with quality index as microbial count.
 11. Shelf Life evaluation with quality index as CIE values.
 13. MAP studies for different products.
 14. Prototype studies for active scavenging packs
 15. Migration Analysis
 16. Study of filling systems on basis of properties of food product

b. Assignments: Minimum two assignments to be given on different principles of food packaging used in the industry. (Note: Preferably the assignments shall be given based on live problems. Assignments may also include objective tests, presentation, etc.)

Oral Examination:
To gauge the understanding of the subject, an Oral examination will be conducted at the end of the term for 25 marks.
Course Code	Course Name	Credits
PPDEL7012 | Advanced Industrial Products Packaging Laboratory | 1.5

Objectives:
1. Study the classification, characteristics & sensitivities of various industrial products.
2. Understand package design & development approach based on the type of industrial product.
3. Study the classification and properties of wood, including the defects.
4. Study the different wood-based packaging forms and other bulk carriers.
5. Understand the product protection principles.

Outcomes: At the end of the course, learners should be able to:
1. Effectively choose packaging materials based on characteristics of industrial products.
2. Describe the various properties & defects of wood packaging material.
3. Analyze the various hazards & environmental issues related to packaging and select a specific protection method for the product.
4. Choose various bulk carriers for industrial packaging based on the type of product.

Term Work: (Comprises both a & b)

a. List of experiments (Minimum 8 to be conducted):
1. To design a wooden box/crate/pallet as per standard.
2. To design a wooden box pallet as per standard.
3. To design a corrugated fibreboard box layout as per product requirements.
4. To design an internal fitment for a given product.
5. To study the characteristics of a desiccant as per standard.
6. To study the characteristics of a VCI paper as per standard.
7. To study test methods for FIBCs
8. To design a unitized load arrangement as per given product conditions.

b. Assignments: Minimum two assignments to be given on different principles of industrial packaging used in the industry. (Note: Preferably the assignments shall be given based on live problems. Assignments may also include objective tests, presentation, etc.)

Oral Examination:
To gauge the understanding of the subject, an Oral examination will be conducted at the end of the term for 25 marks.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPDEL7013</td>
<td>Labelling Technology Laboratory</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Objectives

1. To study the different types of labels, their features and manufacturing process.
2. To understand the process of printing, finishing and applying labels on the packs.
3. To study the types of labels and materials used on the different packages.
4. To study the designing of the labels of all types along with the compensations.
5. To study the new trends in the labelling industry.

Outcomes: At the end of the course, learners will be able to;

1. Explain and compare the different types of labels, their features and manufacturing process.
2. Explain the process of printing, finishing and applying labels on the packs.
3. Select a type of label and material based on the package type.
4. Design the labels of all types along with the compensations.

Term Work: (Comprises both a & b)

a. **List of experiments (Minimum 8 to be conducted):**

1. To Design a label for a product.
2. To do the layout and multiple ups of label for a machine size.
3. To make a shrink label and apply on pack.
4. To find grammage of self-adhesive label components.
5. To calculate percentage compensation for shrink, distortion (for flexo printing).
6. To do finishing operations on labels.
7. To find dimensional stability of labels.
8. To find bond strength of pressure sensitive label.

b. **Assignments:** Minimum two assignments to be given on different principles of Labelling Technology used in the industry. *(Note: Preferably the assignments shall be given based on live problems. Assignments may also include objective tests, presentation, etc.)*

Oral Examination:

To gauge the understanding of the subject, an Oral examination will be conducted at the end of the term for 25 marks.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT701</td>
<td>Printing & Packaging Costing</td>
<td>2</td>
</tr>
</tbody>
</table>

Objectives:
1. To develop the understanding of various cost elements in printing & packaging industry.
2. To learn about the effect of different designs and materials on costing.

Outcomes: Upon successful completion of this course, the learner will be able to
1. Enlist the various cost factors involved in a package or a printed job.
2. Estimate costing for various print jobs.
3. Estimate costing for various package forms.

List of Assignments: (Minimum 6 assignments to be given)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Various costs involved in packaging.</td>
</tr>
<tr>
<td>2</td>
<td>Various costs involved in printing.</td>
</tr>
<tr>
<td>3</td>
<td>Estimate costing for a folding carton.</td>
</tr>
<tr>
<td>4</td>
<td>Estimate costing for a corrugated fibreboard box.</td>
</tr>
<tr>
<td>5</td>
<td>Estimate costing for a print job.</td>
</tr>
<tr>
<td>7</td>
<td>Estimate costing for a flexible laminated pouch.</td>
</tr>
<tr>
<td>8</td>
<td>Estimate costing for a wooden package.</td>
</tr>
</tbody>
</table>

A. One real-life case study for costing to be given to a group (consisting of 3-4 students) as part of termwork.

Termwork (Total 25 Marks):

The distribution of term work marks is as follows:

- Assignments: 10 Marks
- Group Case-study: 10 Marks
- Attendance: 05 Marks
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP701</td>
<td>Mini-Project</td>
<td>2</td>
</tr>
</tbody>
</table>

Objectives:
1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
2. To familiarize the process of problem solving in a group
3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
4. To inculcate the process of research

Outcomes: At the end of the course the learner will be able to…
1. Do literature survey and identify the problem.
2. Apply basic engineering fundamental in the domain of practical applications.
3. Cultivate the habit of working in a team
4. Attempt a problem solution in a right approach.
5. Prepare report as per the standard guidelines.

Mini-Project Guidelines:
1. Students should do literature survey/visit industry/analyse current trends and identify the problem for Mini-Project and finalize in consultation with Guide/Supervisor.
2. Students should use multiple literatures or visit related industries and understand the problem.
3. Students should attempt solution to the problem by experimental/design/simulation methods.
4. The solution to be validated with proper justification and report to be compiled in standard format.

Guidelines for Assessment of Mini-Project:
The Mini-Project should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department during mid-term.
Mini-Project should be assessed based on following points:
1. Quality of problem selected
2. Clarity of Problem definition and Feasibility of problem solution
3. Relevance to the specialization / Industrial trends
4. Clarity of objective and scope
5. Quality of work attempted
6. Validation of results
7. Quality of Written and Oral Presentation

- Project Report shall be prepared strictly as per University of Mumbai report writing guidelines. Students should be motivated to publish a paper in Conferences/students competitions based on the work.
- Mini-Project should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai.
- **Total – 50 Marks**
 - Marks for presentation - 25 marks and
 - Termwork - 25 marks (Attendance – 10 marks, Work Done & Regular reporting – 15 marks)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPC801</td>
<td>Industrial Training & Project</td>
<td>20</td>
</tr>
</tbody>
</table>

Objectives

1. To impart practical exposure to industry.
2. To develop corporate/business ethics and learn organization culture.
3. To enhance entrepreneurial aptitude
4. To understand the workings of an organization, project management, among others.

Outcomes: At the end of the course, learners will be able to;

1. Exhibit the corporate culture/ethics in their work-space/career.
2. Identify the size and scale of operations in Industry.
3. Accomplish allotted tasks within deadlines.
4. Demonstrate an understanding of various constraints in industry.
5. Learn problem solving techniques and also work as a team.
6. Apply the knowledge learnt in their own career.

Guidelines for Evaluation/Assessment

The total duration for each presentation shall be maximum 30 minutes, inclusive of 20 minutes for presentation and 10 minutes for discussion.

50 marks to be awarded during **Mid-term review** based on the points furnished below and as per the discretion of the internal project guide & external examiner:

1. Contents of the presentation.
2. Presentation skills.
3. Interest taken, personal involvement and contribution.
4. Headway/progress made in the project execution.

Evaluation/Assessment of the Term Work

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction, Acknowledgements, references, Company background/activities. Synopsis/Abstract of the Project/General presentation, neatness and accuracy of the data furnished.</td>
</tr>
<tr>
<td>2. Internship/Training details.</td>
</tr>
<tr>
<td>3. Technical contents of the report with data / observations, graphs, drawings, etc. and Quality of work carried out and details furnished based on personal Observations/involvement.</td>
</tr>
<tr>
<td>4. Results/ Conclusion.</td>
</tr>
<tr>
<td>5. Industry Evaluation.</td>
</tr>
</tbody>
</table>

Total - 100

Oral examination / Presentation:

Final End-semester presentation to be conducted by internal and external examiners for **50 marks.**
Industrial Training Guidelines

1. In Professional Internship (in-plant/industrial training) students will be allotted/placed in company/industry/plant or a factory related to printing & packaging technology for duration of 24 weeks.

2. Professional Internship (PI) can also include working under a Research Scholar to assist in research, joining as a trainee in private institutes/laboratories/organizations/small firms for the said period.

3. The student shall spend the PI period for observational training and solving assignments/projects given by the organization. Students are expected to analyze the problems systematically and offer suggestion / concluding remarks.

4. Students are required to observe and learn the organization mission/vision/objective, the executive hierarchy, functioning, production, management and laws/regulation/compliance with Indian and International standards.

5. Students are required to maintain a diary to record daily activities at the organization w.r.t. processes/systems learnt, or work done.

6. Industrial training shall also include fortnightly reports submission and discussions by students with respective guides.

Project Guidelines

1. The student shall submit a report on project, suggested by industry where he/she is undergoing professional/In-plant training.

2. Project may be of the following types, but not limited to:
 - Manufacturing / Fabrication of a prototype including selection, concept design, material selection, manufacturing the components, assembly of components, testing and performance evaluation.
 - Improvement of existing machine / equipment / process.
 - Design and Fabrication of parts, tools, special purpose equipment, gauges, measuring instruments, etc.
 - Computer aided design, analysis of components such as stress analysis, etc.
 - Problems related to productivity improvements.
 - Problems related to value engineering.
 - Problems related to material handling system.
 - Product design and development
 - Detailed cost estimation of product.
 - Analysis, evaluation and experimental verification of any engineering problem encountered.
 - Quality system and management, Total quality management.
 - Quality improvements In-process Inspection Online
 - Waste management system, Safety, etc.
 - Market analysis in conjunction with production, planning and control.
 - Any other relevant topic, as approved by the internal guide.

3. The student shall submit a detailed report based on the project work.

4. The topic/area should be finalized in stipulated time period.

5. Each student is to have an internal guide from the Institute and one external guide from the corresponding organization.

6. Mid semester evaluation of the project is to be done after about 9-10 weeks by internal guide.

7. End-semester evaluation and viva voce will be conducted by a committee consisting of an internal examiner and external examiner approved by University of Mumbai.

~ * ~