Q.1. (A) A bag contains 7 red and 3 black balls and another bag contains 4 red and 5 black balls. One ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. If this ball happens to be red, find the probability that a black ball was transferred.

(B) Check whether the Random Process given by $x(t) = A \sin(t) + B \cos(t)$ is ergodic, where A, B are Random Variables normally distributed with zero means and unit variances.

(C) Write a short note on “Markov Chain.”

(D) Find ‘P’ of Binomial Distribution if $n=6$ and $9P(X=4) = P(X=2)$. (05)

Q.2. (A) The Power Spectral Density of a WSS Process is given by,

$$S_x(W) = \begin{cases} \frac{b}{a} (a - |w|) & \text{if } |w| \leq a \\ 0 & \text{if } |w| > a \end{cases}$$

Find the Autocorrelation Function.

(B) Let X_1, X_2, X_3, \ldots be sequence of Random variables. Define (i) Convergence almost everywhere (ii) Convergence in probability (iii) Convergence in distribution (iv) Convergence in mean square sense for the above sequence of Random variables X.

Q.3. (A) Prove that if input to an LTI system is Wide sense stationary (WSS) process then output is also WSS.

(B) A binary communication transmitter sends data as one of two types of signal denoted by 0 or 1. Due to noise, sometimes a transmitted 1 is received as 0 and vice versa. If the probability that a transmitted 0 is correctly received as 0 is 0.9 and the probability that the 1 is received as 1 is 0.8 and if the probability of transmitting 0 is 0.45. Find the probability that 1) A 1 is received. 2) A 0 is received. 3) 1 was transmitted given that 1 was received. 4) 0 was transmitted given that 0 was received. 5) The error has occurred.

Q.4. (A) A random variable has the following exponential probability density function: $f(x) = Ke^{-0.5x}$. Determine

i) The value of K and ii) Mean and variance.

(B) The transition probability matrix of Markov Chain is given is by,

$$P = \begin{pmatrix} 1 & 0.5 & 0.4 & 0.1 \\ 2 & 0.3 & 0.4 & 0.3 \\ 3 & 0.2 & 0.3 & 0.5 \end{pmatrix}$$

Find the limiting probabilities.
Q. 5. (A) The joint probability density function of two continuous random variable X and Y is given by,

\[
f_{xy}(x, y) = \begin{cases}
Ce^{-x}e^{-y} & 0 < x < \infty \\
0 & \text{elsewhere}
\end{cases}
\]

Find 1) The value of C.
2) \(f_x(x), f_y(y)\).
3) \(f_{X|Y}(X/Y), f_{Y|X}(Y/X)\).
4) \(E[Y/X] = X, E[X/Y] = Y\).

(B) Write a short note on "Little’s Formula".

Q. 6. (A) State and prove Chapman-Kolmogorov equation.
(B) Write a short note on the following distributions
i) Poisson Distribution and (ii) Gaussian Distribution