N.B. (1) Question No.1 is compulsory.
(2) Attempt any three questions out of the remaining five questions.
(3) Figures to right indicate full marks.

1. (a) Prove that \(f(z) = x^2 - y^2 + 2xyz \) is analytic and find \(f'(z) \)
(b) Find the Fourier series expansion for \(f(x) = |x| \) in \((-\pi, \pi)\)
(c) Using Laplace transform solve the following differential equation with given condition \(\frac{d^2y}{dt^2} + y = t \), given that \(y(0) = 1 \) & \(y'(0) = 0 \)
(d) If \(\vec{A} = \nabla(xy + yz + zx) \), find \(\nabla \cdot \vec{A} \) and \(\nabla \times \vec{A} \)

2. (a) If \(L[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}} \), prove that \(\int_0^\infty e^{-st} J_0(4t) dt = 3/500 \)
(b) Find the directional derivative of \(\phi = x^4 + y^4 + z^4 \) at \(A (1, -2, 1) \) in the direction of \(\vec{AB} \) where \(B \) is \((2, 6, -1)\). Also find the maximum directional derivative of \(\phi \) at \((1, -2, 1)\).
(c) Find the Fourier series expansion for \(f(x) = 4 - x^2 \), in \((0, 2)\)
Hence deduce that \(\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} \ldots \ldots \ldots \ldots \)

3. (a) Prove that \(J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin x \)
(b) Using Green's theorem evaluate \(\int_C (2x^3 - y^3) dx + (x^3 + y^3) dy \) where \(C \) is the boundary of the surface enclosed by the lines \(x = 0, y = 0, x = 2, y = 2 \).
(c) i) Find Laplace Transform of \(e^{-3u} \int_0^u u \sin 3u \, du \)
ii) Find the Laplace transform of \(\frac{d}{dt} \left(\frac{1 - \cos 2t}{t} \right) \)

4. (a) Obtain complex form of Fourier series for the functions \(f(x) = \sin ax \) in \((-\pi, \pi)\), where \(a \) is not an integer.
(b) Find the analytic function whose imaginary part is \(v = \frac{x}{x^2 + y^2} \cdot \cosh y \cdot \cos x \)
(c) Find inverse Laplace Transform of following
\[\text{i)} \quad \log \left(\frac{x^2 + a^2}{\sqrt{s+b}} \right) \quad \text{ii)} \quad \frac{1}{s^3(s-1)} \]

5. (a) Obtain half-range cosine series for \(f(x) = x(2-x) \) in \(0 < x < 2 \)
(b) Prove that \(\vec{F} = \frac{\vec{r}}{r^3} \) is both irrotational and solenoidal
(c) Show that the function \(u = \sin x \cosh y + 2 \cos x \sinh y + x^2 - y^2 + 3xy \) satisfies

GN-Con. 8067-14.

[TURN OVER
Laplace's equation and find it corresponding analytic function

6. (a) Evaluate by Stoke's theorem \(\int \left(x \, y \, dx + x \, y^2 \, dy \right) \) where C is the square in the xy-plane with vertices \((1,0), (0,1), (-1,0), and (0,-1)\).
(b) Find the bilinear transformation, which maps the points \(z = -1, 1, \infty\) onto the points \(w = -i, -1, i\).
(c) Show that the general solution of \(\frac{d^2 y}{dx^2} + 4x^2 y = 0 \) is \(y = \sqrt{x} \left[A \, J_{1/4}(x^2) + B \, J_{-1/4}(x^2) \right] \) where A and B are constants.