N.B.: (1) Question No.1 is compulsory.
(2) Attempt any three from remaining questions.
(3) Assume suitable data if required and mention the same in answer book.

1. Attempt any five:
 (a) The PNP transistor shown in Fig 1a has $\beta=50$. Find the value of R_c to obtain $V_c=+5V$. What happens if transistor is replaced with another transistor having $\beta=100$.

 ![Fig 1a Diagram]

 (b) Draw small signal model of JFET and explain significance of each parameter.
 (c) Why common collector amplifier is used as buffer. Why buffers are required.
 (d) Write down current equation of diode and explain significance of each parameters.
 (e) For the circuit shown in Fig 1e. Find I_{ds} and V_{ds} if $V_{rs}=1.5$ V.

 ![Fig 1e Diagram]
(f) Compare Colpitt's and Clapp's oscillator.

2. (a) Explain working of n-channel EMOSFET with the help output characteristics, showing clearly effect of channel length modulation. Given equation of drain current in linear and saturation current along with conditions.

(b) Design JFET circuit with voltage divider biasing as shown in Fig 2b with JFET parameters $I_{dss} = 12$ mA, $V_{r} = -3.5$ V and $\lambda = 0$. Let $R_1 + R_2 = 100$ K, $I_{dsq} = 5$ mA and $V_{dsq} = 5$ V.

![Diagram of JFET circuit](image)

3. (a) Draw circuit diagram of common emitter amplifier with voltage divider bias with bypassed emitter resistance and derive expression for voltage gain, current gain, input resistance, output resistance using hybrid-π model which includes early effect.

(b) In n-channel E-MOSFET

(i) Substrate doping $N_A = 10^{16}$ cm3
(ii) Polysilicon Gae doping $N_D = 10^{20}$ cm3
(iii) Gate oxide thickness tox = 0.5 μm
(iv) Oxide positive charge interface density = 4×10^{10} cm$^{-2}$
(v) Charge of electron = 1.6×10^{-19} col
(vi) Permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-14}$ F/cm.
(vii) Dielectric constant of Si = 11.9
(viii) Dielectric constant of SiO$_2$ = 3.9
Find zero bias threshold voltage (V_{TO})
4. (a) Explain the working of wien-Bridge Oscillator. Derive the expression for frequency of Oscillation and the value of gain required for sustained oscillation.
(b) For the circuit shown in Fig 4b, assume $\beta=100$.
 (i) Find thevenin's equivalent voltage V_{th} and resistance R_{th} for base circuit.
 (ii) Determine I_{CQ} and V_{CBO}

![Figure 4b](image_url)

5. (a) Draw a required diode clamper circuit to generate the output v_o from the input v_i as shown in Fig 5a if
 (i) $V_T = 0\text{V}$
 (ii) $V_T = 0.7\text{V}$. Where V_T is cutin voltage of diode.

![Figure 5a](image_url)
(b) What are different biasing techniques used to bias D-MOSFET and E-MOSFET. Explain with the help of appropriate circuit diagrams.

6. Write short notes on any four:
 (i) Hybrid-π model of BJT
 (ii) Twin-T oscillator
 (iii) AC and DC load line.
 (iv) Construction and operation of photodiode.
 (v) MOS capacitor.