N.B.: (1) Q. No. 1 is compulsory
(2) Attempt any three questions from remaining questions.
(3) Solve every question in a serial order.

1. Attempt any four:
 a) What is Sinc(x) function? Plot graphically Sinc(x) function for the range of x : -2.5<x<2.5
 b) Obtain DTFT and plot the magnitude and phase response of h(n) = {0,1,1,1}
 c) Distinguish between power signals and energy signals. Is \(x(t) = \cos^2(\omega_0 t) \) is energy signal or power signal? Find its normalized energy or power.
 d) State and prove differentiation of Z-transform.
 e) Check whether the following system is linear, time variant, causal or otherwise : \(y(n) = x(n) + n*x(n+1) \)

2. a) Find the response of the system
 \[x(t) = \frac{d^2y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 6y(t) \]
 Subject to the initial conditions \(y(0) = 2, y(0) = 1 \) and input \(x(t) = e^{-t}u(t) \).
 b) Find and sketch the Even and Odd components of the following:
 \(x(t) = t, \ 0 < t < 1 \)
 \(x(t) = 2-t, \ 1 < t < 2 \)
 c) State and prove frequency shift property of the Fourier transform.

3. a) Compute the convolution \(y(n) = x(n) * h(n) \) where
 \(X(n) = \{1,1,0,1,1\} \) and \(h(n) = \{1,-2,-3,4\} \)
 b) Find Inverse Z-transform of the following:
 \[X(Z) = \frac{2Z^2 + 3Z}{Z^2 + Z + 1}, \text{ if } x(n) \text{ is causal.} \]
 c) Define ESD and PSD. What is the relation of ESD and PSD with autocorrelation?
4. a) Find \(y(t) = x(t) * h(t) \) of the signal shown above using graphical convolution.

b) Obtain system function \(H(z) \) for
\[
y(n) + \frac{1}{2} y(n - 1) = x(n) - x(n - 1)
\]

Determine the poles and zeros and draw a pole zero plot.

c) Obtain DTFT and plot the magnitude and phase response of \(h(n) = \{2, 1, 2\} \)

5. a) Determine the Z transform and sketch ROC

1) \(x_1[n] = \left[\begin{array}{c} 1 \\ 3 \end{array}\right] \) \(n \geq 0 \)

2) \(x_2[n] = x_1[n + 4] \)

b) Obtain Laplace transform by using properties of Laplace transform only.

c) Determine Fourier transform of signum signal
6. a) Obtain initial Laplace transform of \(X(s) = \frac{2s^2 + 5s + 5}{(s + 2)(s + 1)^2} \) for all possible ROC conditions.

b) Obtain Fourier transform by using properties of Fourier transform only.