Q. P. Code: 50453

[Time: 3 Hours] [Marks: 80]

N.B: 1) Question no. 1 is compulsory.
2) Attempt any three out of the remaining five questions
3) Use suitable data, wherever necessary.

Question 1: Attempt any four questions from the following. (20)

I. I) Differentiate between Mealy Machine and Moore Machine
II. Draw the Standard symbols for ASM Charts.
III. Compose VHDL code for Implementation of D Flip Flop
IV. Differentiate between signal and Variable.
V. Differentiate between IC 7490, IC 7492, IC 7493

Question 2 (A) Analyse the sequential circuit shown below. Derive the excitation equation, Transition table and state diagram. (10)

Question 2 b) Draw the data unit for the following RTL description (10)

Module; Data Mover
Inputs: X [2].
Outputs: Z [2].

1. A ← X.
2. C ← A .
3. B ← X [1], X [0].
4. C ← A V B.
5. Z = C.

End sequence.
Question 3(A) Shown below is the state table for sequential machine, using implication chart method, eliminate redundant states and obtain minimized state diagram. (10)

<table>
<thead>
<tr>
<th>X1X2</th>
<th>00</th>
<th>Z</th>
<th>01</th>
<th>Z</th>
<th>10</th>
<th>Z</th>
<th>11</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>F</td>
<td>0</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>E</td>
<td>1</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>E</td>
<td>1</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>0</td>
<td>B</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>C</td>
<td>1</td>
<td>F</td>
<td>0</td>
<td>E</td>
<td>1</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>D</td>
<td>0</td>
<td>D</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
<td>0</td>
<td>G</td>
<td>0</td>
<td>A</td>
<td>0</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>B</td>
<td>1</td>
<td>D</td>
<td>0</td>
<td>E</td>
<td>1</td>
<td>A</td>
<td>0</td>
</tr>
</tbody>
</table>

Question 3(B): Construct ASM chart of sequence detector which detects the sequence 1001. The output Z becomes 1 along with the last correct bit of the sequence. (10)

Question 4(A): Create VHDL code for Implementation of 4:1Multiplexer using two different architecture modelling styles.

Question 4(B): Design a MOD 61 up counter using IC 74163 and explain its working. (10)

Question 5(A): Design full subtractor using PLA. (10)

Question 5(B): Explain input-output block architecture for FPGA 4000 family. (10)

Question 6 (A): Write VHDL code for the state diagram given below. (10)

Question 6(b): Evaluate the value of output variable for following signal declarations. (10)

```vhdl
SIGNAL a: BIT := '1';
SIGNAL b: BIT_VECTOR (3 DOWNTO 0):= "1100";
SIGNAL c: BIT_VECTOR (3 DOWNTO 0):= "0010";
X1 <= c & b: ------ X1< =________
X2 <= b XOR c: ------ X2< =________
X3 <= b sll 2: ------ X3< =________
X4 <= b rol 3: ------ X4< =________
X5 <= a AND NOT b (0) AND NOT c(1); ----X5< =________
```
