N.B. (1) Question No.1 is compulsory.

(2) Answer any three questions from remaining.

(3) Figures to the right indicate full marks.

Q1.
 a) Evaluate \(\int_{0}^{\infty} \frac{\sin 3t + \sin 2t}{te^t} \, dt \).

 b) Find the directional derivative of the function \(\phi = 4xz^2 + x^2yz \) at \((1, -2, 1)\) in the direction of \(2\hat{i} - \hat{j} - 2\hat{k} \).

 c) Expand \(f(x) = \pi x - x^2 \) in a half range sine series in the interval \((0, \pi)\).

 d) Show that the function \(u(x, y) = x^3 - 3xy^2 + 3x^2y - 3y^2 + 1 \) is harmonic. Find the corresponding analytic function \(f(z) \).

Q2.
 a) Prove that \(J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{\sin x}{x} - \cos x \right] \).

 b) Find Fourier series to represent \(f(x) = 4 - x^2 \) in the interval \((0, 2)\).

 c) Solve the following differential equation using Laplace transform \(\frac{d^2y}{dt^2} + 2 \frac{dy}{dt} + y = 3te^{-t} \), given \(y(0) = 4 \), \(y'(0) = 2 \).

Q3.
 a) Show that \(\vec{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k \) is conservative. Find the scalar potential for \(\vec{F} \) and also find the work done by \(\vec{F} \) in moving a particle from \((1,0,1)\) to \((2,1,3)\).

 b) Obtain the complex form of the Fourier series for \(f(x) = e^{3x} \) in \((0,3)\).

 c) Find the Inverse Laplace Transform of

 i) \(\frac{8s + 20}{s^3 - 12s + 32} \)
 ii) \(\tan^{-1} \left(\frac{s + a}{b} \right) \).
Q.4
a) Prove that \(\int J_1(x)dx + 2 \frac{J_1(x)}{x} + J_2(x) = 0 \)

b) Evaluate \(\int_c \left(x^2ydx + x^2dy\right) \) where C is the boundary described in the anti clockwise direction of the triangle with vertices (0,0), (1,0) and (1,1).

c) Find Fourier series expansion of
\[
f(x) = \begin{cases}
2 & -2 < x < 0 \\
0 & 0 < x < 2
\end{cases}
\]

Q.5
a) Show that the map of the real axis of the z plane is a circle under the transformation \(w = \frac{2}{z + i} \). Find the centre and radius of the circle.

b) Find the Fourier Integral representation of \(f(x) = 1 \) \(|x| < 1 = 0 \) \(|x| > 1 \) hence evaluate \(\int_0^\infty \frac{\sin \omega \cos \omega x}{\omega} d\omega \)

c) i) Find the Laplace Transform of \((1 + 2t - t^2 + t^3) H(t - 4) \)

ii) If \(\vec{F} = x^2 z \hat{i} - 2y^3 z^3 \hat{j} + xy^2 z^2 \hat{k} \) find \(\text{div} \vec{F} \) and \(\text{curl} \vec{F} \)

Q.6
a) Use Convolution theorem to find \(L^{-1} \left(\frac{s^2}{(s^2 + 4)^2} \right) \)

b) Use Gauss Divergence Theorem to evaluate \(\iint_S \vec{N} \cdot \vec{F} ds \) where \(\vec{F} = 4x \hat{i} + 3y \hat{j} - 2z \hat{k} \) and S is the surface bounded by \(x=0, y=0, z=0 \) and \(2x+2y+z=4 \).

c) If \(f(z) = u + iv \) is an analytic function of \(z = x + iy \) and \(u + v = \cos x \cosh y - \sin x \sinh y \) find \(f(z) \) in terms of \(z \)