22/11/12

Q.P. Code:23022

[Time: Three Hours]

[Marks:80]

Please check whether you have got the right question paper.

N.B:

- 1. Question.No.1 is compulsory.
- 2. Attempt any three questions from Q.2 to Q.6
- 3. Use of statistical table permitted.
- 4. Figures to the right indicate full marks.

Q.1

a) Evaluate $\int_C \log z \, dz$ where C is the unit circle in the z - plane.

05

b) Find the eigen values of the adjoint of $A = \begin{bmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$

05

c) If the arithmetic mean of regression coefficient is p and their difference is 2q, find the correlation coefficient.

05

05

d) Write the dual of the following L.P.P.

Maximise $Z = 2x_1-x_2+4x_3$

Subject to $x_1+2x_2-x_3 \le 5$

 $2x_1-x_2+x_3 \le 6$ $x_1+x_2+3x_3 \le 10$

 $\begin{array}{c} x_1 + x_2 + 3x_3 \le 10 \\ 4x_1 + x_3 \le 12 \end{array}$

 $x_1, x_2, x_3 \ge 0$

Q.2

a) Evaluate $\int_C \frac{\cot z}{z} dz$ where C is the ellipse $9x^2 + 4y^2 = 1$

06

b) Show that $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ is non-derogatory.

06

c) If X is a normal variate with mean 10 and standard deviation 4, find i) P(|X - 14| < 1), ii) $P(5 \le X \le 18)$, iii) $P(X \le 12)$

08

- a) Find the expectation of number of failures preceeding the first success in an infinite series 06 Q.3 of independent trials with constant probabilities p & q of success and failure respectively.
 - b) Using Simplex Method solve the following L.P.P Maximise $Z = 10x_1 + x_2 + x_3$ $x_1 + x_2 - 3x_3 \le 10$ Subject to $4x_1 + x_2 + x_3 \le 20$
 - 06 $x_1, x_2, x_3 \ge 0$
 - c) Expand $f(z) = \frac{1}{z(z+1)(z-2)}$
 - Within the unit circle about the origin. 08 (i) with in the annulus region between the concentric circles about the origin having (ii)radii 1 and 2 respectively.
 - In the exterior of the circle with centre at the origin and radius 2. (iii)
- 06 a) If X is Binomial distributed with mean=2 and variance = 4/3, find the probability Q.4 distribution of X.
 - Calculate the value of rank correlation coefficient from the following data regarding score 06 of 6 students in physics & chemistry test. 40, 42, 45, 35, 36, 39 46, 43, 44, 39, 40, 43 Marks in Physics : Marks in Chemistry:
 - 08 diagonalisable? If so find the diagonal form and the transforming matrix.
- a) A random sample of 50 items gives the mean 6.2 and standard deviation 10.24. Can it be 06 Q.5 regarded as drawn from a normal population with mean 5.4 at 5% level of significance?
 - 06 b) Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)^3}$, a>0 Using Cauchy's residue theorem.
 - Using Kuhn-Tucker condition to solve the following N.L.P.P 08 Maximise $Z = 8x_1 + 10x_2 - x_1^2 - x_2^2$ $3x_1 + 2x_2 \le 6$ Subject to $x_1, x_2 \ge 0$

06

08

Q.6

a) The following table gives the number of accidents in a city during a week. Find whether the accidents are uniformly distributed over a week.

Day:	Sun,	Mon,	Tue,	Wed,	Thu,	Fri,	Sat,	Total.
No. of accidents:	13	15	9	11	12	10	14	84

b) If two independent random samples of sizes 15 & 8 have respectively the following

means and population standard deviations,
$$\overline{X_1} = 980 \qquad \overline{X_2} = 1012$$

$$\sigma_1 = 75 \qquad \qquad \sigma_2 = 80$$

Test the hypothesis that $\mu_1 = \mu_2$ at 5% level of significance,

(Assume the population to be normal)

c) Using Penally (Big M) method solve the following L.P.P

Minimise
$$Z = 2x_1 + x_2$$

Subject to $3x_1+x_2=3$
 $4x_1+3x_2 \ge 6$
 $x_1+2x_2 \le 3$
 $x_1, x_2 \ge 0$
