CIRCULAR:

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular Nos. UG/156 of 2016-17, dated 16th November, 2016 relating to syllabus of the Bachelor of Science (B.Sc.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Chemistry at its meeting held on 28th May, 2018 have been accepted by the Academic Council at its meeting held on 14th June, 2018 vide item No. 4.41 and that in accordance therewith, the revised syllabus as per the (CBCS) for the Chemistry of T.Y.B.Sc. Physical Chemistry, Inorganic Chemistry, Organic Chemistry and Analytical Chemistry (Sem - V & VI) (3 and 6 Units) including Applied Component Drugs and Dyes, Heavy Fine Chemicals and Petrochemicals has been brought into force with effect from the academic year 2018-19, accordingly. (The same is available on the University’s website www.mu.ac.in).

MUMBAI – 400 032
6th June, 2018

To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.41/14/06/2018

MUMBAI-400 032
6th June, 2018

Copy forwarded with Compliments for information to:-
1) The I/c Dean, Faculty of Science & Technology,
2) The Chairman, Board of Studies in Chemistry,
3) The Director, Board of Examinations and Evaluation,
4) The Director, Board of Students Development,
5) The Co-Ordinator, University Computerization Centre,

(Dr. Dinesh Kamble)
I/c REGISTRAR
1. Molecular Symmetry and Chemical Bonding

1.1 Molecular Symmetry (6L)
1.1.1 Introduction and Importance of Symmetry in Chemistry.
1.1.2 Symmetry elements and Symmetry operations.
1.1.3 Concept of a Point Group with illustrations using the following point groups: (i) $C\infty V$ (ii) $D_{\infty h}$ (iii) C_{2V} (iv) C_{3v} (v) C_{2h} and (vi) D_{3h}

1.2 Molecular Orbital Theory for heteronuclear diatomic molecules and polyatomic species (9L)

1.2.1 Comparison between homonuclear and heteronuclear diatomic molecules.
1.2.2. Heteronuclear diatomic molecules like CO, NO and HCl, appreciation of modified MO diagram for CO.
1.2.3 Molecular orbital theory for H_2 and H_3^+ (correlation diagram expected).
1.2.4. Molecular shape to molecular orbital approach in AB_2 molecules. Application of symmetry concepts for linear and angular species considering σ- bonding only. (Examples like: i) BeH_2, ii) H_2O).

2 SOLID STATE CHEMISTRY

2.1 Structures of Solids (11L)
2.2.1 Explanation of terms viz. crystal lattice, lattice point, unit cell and lattice constants.
2.1.2 Closest packing of rigid spheres (hcp,ccp), packing density in simple cubic, bcc and fcc lattices. Relationship between density, radius of unit cell and lattice parameters.
2.1.3 Stoichiometric Point defects in solids (discussion on Frenkel and Schottky defects expected).

2.2 Superconductivity (4L)

2.2.1 Discovery of superconductivity.

2.2.2 Explanation of terms like superconductivity, transition temperature, Meissner effect.

2.2.3 Different types of super conductors viz. conventional superconductors, alkali metal fullerides, high temperature super conductors.

2.2.4 Brief application of superconductors.

UNIT-III

3.0 CHEMISTRY OF INNER TRANSITION ELEMENTS (15L)

3.1 Introduction: Position in periodic table and electronic configuration of lanthanides and actinides.

3.2 Chemistry of Lanthanides with reference to (i) lanthanide contraction and its consequences (ii) Oxidation states (iii) Ability to form complexes (iv) Magnetic and spectral properties

3.3 Occurrence, extraction and separation of lanthanides by (i) Ion Exchange method and (ii) Solvent extraction method (Principles and technique)

3.4 Applications of lanthanides

UNIT-IV

4. SOME SELECTED TOPICS

4.1 Chemistry of Non-aqueous Solvents (5 L)

4.1.1 Classification of solvents and importance of non-aqueous solvents.

4.1.2 Characteristics and study of liquid ammonia, dinitrogen tetra oxide as non-aqueous solvents with respect to: (i) acid-base reactions and (ii) redox reactions.

4.2 Comparative Chemistry of Group 16 (5L)

4.2.1 Electronic configurations, trends in physical properties, allotropy

4.2.2 Manufacture of sulphuric acid by Contact process.

4.3 Comparative Chemistry of Group 17 (5L)

4.3.1 Electronic configuration, General characteristics, anomalous properties of fluorine, comparative study of acidity of oxyacids of chlorine w.r.t. acidity, oxidising properties and structures (on the basis of VSEPR theory)

4.3.2 Chemistry of interhalogens with reference to preparations, properties and structures (on the basis of VSEPR theory).
REFERENCES

SEM-V

Unit-I

1. Per Jensen and Philip R. Bunker, Fundamentals of Molecular Symmetry, Series in Chemical Physics, Taylor & Francis Group
2. J. S. Ogden, Introduction to Molecular Symmetry, Oxford University Press
3. Derek W. Smith, Molecular orbital theory in inorganic chemistry Publisher: Cambridge University Press

Unit-II

2. C. N. R. Rao Advances in Solid State Chemistry
3. R.G. Sharma Superconductivity: Basics and Applications to Magnets
6. Richard Harwood, Chemistry, Cambridge University Press,

Unit-III

4. G. Singh, Chemistry of Lanthanides and Actinides, Discovery Publishing House
5. Simon Cotton, Lanthanide and Actinide Chemistry Publisher: Wiley-Blackwell

Unit-IV

1. B. H. Mahan, University Chemistry, Narosa publishing.
Practicals

SEMESTER V

INORGANIC CHEMISTRY

COURSE CODE: USCHP05 CREDITS: 02

Course USCH502: Inorganic Practicals (60L)

I. Inorganic preparations

1. Preparation of Potassium diaquobis-(oxalato)cuprate (II)
2. Preparation of Ferrous ethylene diammonium sulphate.
3. Preparation of bis(acetylacetonato)copper(II)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

(Any three salts of transition metal ions)

Reference Books (practicals)

U.N.Dhur & Sons Pvt Ltd.

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCH602 CREDITS: 02 LECTURES: 60

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>CREDITS</th>
<th>LECTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>USCH602</td>
<td>(60)</td>
<td>(60 Lectures)</td>
</tr>
</tbody>
</table>

(Numericals and word problems are expected)

UNIT-I

1. Theories of the metal-ligand bond (I) (15L)

1.1 Limitations of Valence Bond Theory.

1.2 Crystal Field Theory and effect of crystal field on central metal valence orbitals in various geometries from linear to octahedral(from coordination number 2 to coordination number 6)

1.3 Splitting of d orbitals in octahedral, square planar and tetrahedral crystal fields.

1.4 Distortions from the octahedral geometry: (i) effect of ligand field and (ii) Jahn-Teller distortions.

1.5 Crystal field splitting parameters Δ; its calculation and factors affecting it in octahedral complexes, Spectrochemical series.

1.6 Crystal field stabilization energy (CFSE), calculation of CFSE for octahedral complexes with d^9 to d^{10} metal ion configurations.

1.7 Consequences of crystal field splitting on various properties such as ionic radii, hydration energy and enthalpies of formation of metal complexes of the first transition series.

1.8 Limitations of CFT: Evidences for covalence in metal complexes (i) intensities of d-d transitions, (ii) ESR spectrum of $\text{[IrCl}_6]^{2-}$ (iii) Nephelauxetic effect.

UNIT-II

2. Theories of the metal-ligand bond (II)

2.1 Molecular orbital Theory for coordination compounds. (4L)
2.1.1 Identification of the central metal orbitals and their symmetry suitable for formation of \(\sigma \) bonds with ligand orbitals.

2.1.2 Construction of ligand group orbitals.

2.1.3 Construction of \(\sigma \)-molecular orbitals for an ML\(_6\) complex.

2.1.4 Effect of \(\pi \)-bonding on complexes.

2.1.5 Examples like \([\text{FeF}_6]^4\), \([\text{Fe(CN)}_6]^4\), \([\text{FeF}_6]^3\), \([\text{Fe(CN)}_6]^3\), \([\text{CoF}_6]^3\), \([\text{Co(NH}_3)_6]^3\) [\(\text{Co(NH}_3)_6\)]^3 [\(\text{Co(NH}_3)_6\)]^3

2.2 Stability of Metal-Complexes (4L)

2.2.1 Thermodynamic and kinetic perspectives of metal complexes with examples.

2.2.2 Stability constants: stepwise and overall stability constants and their interrelationship.

2.2.3 Factors affecting thermodynamic stability.

2.3 Reactivity of metal complexes. (4L)

2.3.1 Comparison between Inorganic and organic reactions.

2.3.2 Types of reactions in metal complexes.

2.3.3 Inert and labile complexes: correlation between electronic configurations and lability of complexes.

2.3.4 Ligand substitution reactions: Associative and Dissociative mechanisms.

2.3.5 Acid hydrolysis, base hydrolysis and anation reactions.

2.4 Electronic Spectra. (3L)

2.4.1 Origin of electronic spectra

2.4.2 Types of electronic transitions in coordination compounds: intra-ligand, Charge transfer and intra-metal transitions.

2.4.3 Selection rules for electronic transitions.

2.4.4 Electronic configuration and electronic micro states, Terms and Term symbols for transition metal ions, rules for determination of ground state term.

2.4.5 Determination of Terms for \(p^2\) and \(d^1\) electronic configurations.

UNIT-III

3 ORGANOMETALLIC CHEMISTRY (15L)

3.1 Organometallic Compounds of main group metal (6L)

3.1.1 General characteristics of various types of organometallic compounds, viz. ionic, \(\sigma\)-bonded and electron deficient compounds.

3.1.2 General synthetic methods of organometallic compounds: (i) Oxidative-addition, (ii) Metal-metal exchange (transmetallation), (iii) Carbanion-halide exchange, (iv) Metal-hydrogen exchange (metallation) and (v) Methylene-insertion reactions.

3.1.3 Some chemical reactions of organometallic compounds:
(i) Reactions with oxygen and halogens, (ii) Alkylation and arylation reactions (iii) Reactions with protic reagents, (iv) Redistribution reactions and (v) Complex formation reactions.

3.2 Metalloccenes

<table>
<thead>
<tr>
<th>5L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Ferrocene: Synthesis, properties, structure and bonding on the basis of VBT.</td>
</tr>
</tbody>
</table>

3.3 Catalysis

<table>
<thead>
<tr>
<th>4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1 Comparison between homogeneous and heterogeneous catalysis</td>
</tr>
<tr>
<td>3.3.2 Basic steps involved in homogeneous catalysis</td>
</tr>
<tr>
<td>3.3.3 Mechanism of Wilkinson’s catalyst in hydrogenation of alkenes.</td>
</tr>
</tbody>
</table>

UNIT-IV

4 SOME SELECTED TOPICS

<table>
<thead>
<tr>
<th>15L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Metallurgy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Types of metallurgies,</td>
</tr>
<tr>
<td>4.1.2 General steps of metallurgy: Concentration of ore, calcinations, roasting, reduction and refining.</td>
</tr>
<tr>
<td>4.1.3 Metallurgy of copper: occurrence, physicochemical principles, extraction of copper from pyrites & refining by electrolysis.</td>
</tr>
</tbody>
</table>

4.2 Chemistry of Group 18

<table>
<thead>
<tr>
<th>5L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Historical perspectives</td>
</tr>
<tr>
<td>4.2.2 General characteristics and trends in physical and chemical properties</td>
</tr>
<tr>
<td>4.2.3 Isolation of noble gases</td>
</tr>
<tr>
<td>4.2.4 Compounds of Xenon (oxides and fluorides) with respect to preparation and structure (VSEPR)</td>
</tr>
<tr>
<td>4.2.5 Uses of noble gases</td>
</tr>
</tbody>
</table>

4.3 Introduction to Bioinorganic Chemistry

<table>
<thead>
<tr>
<th>3L</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Essential and non essential elements in biological systems.</td>
</tr>
<tr>
<td>4.3.2 Biological importance of metal ions such as Na⁺, K⁺, Fe²⁺/Fe³⁺ and Cu⁺² (Role of Na⁺ and K⁺ w.r.t ion pump)</td>
</tr>
</tbody>
</table>

References.

SEM-VI
Unit-I:
2. R. K. Sharma Text Book of Coordination Chemistry Discovery Publishing House
5. Glen E. Rodgers, Descriptive Inorganic, Coordination, and Solid-State Chemistry Publisher: Thomson Brooks/Cole

Unit-II:
1. Ramesh Kapoor and R.S. Chopra, Inorganic Chemistry, R. Chand publishers,
3. Twigg, Mechanisms of Inorganic and Organometallic Reactions Publisher: Springer
5. M. L. Tobe Inorganic Reaction Mechanisms Publisher Nelson, 1972

Unit-III:

Unit-IV
PRACTICALS

SEMESTER VI

INORGANIC CHEMISTRY

COURSE CODE: USCHP06 CREDITS: 02

I. Inorganic preparations
 1. Preparation of Tris(acetylacetonato) iron(III)
 2. Green synthesis of bis(dimethylglyoximato) nickel(II) complex using nickel carbonate and sodium salt of dmg.
 3. Preparation of potassium trioxalato aluminate (III)

II. Determination of percentage purity of the given water soluble salt and qualitative detection w.r.t added cation and/or anion (qualitative analysis only by wet tests).

 (Any three salts of main group metal ions)

Reference Books (practicals)