## UNIVERSITY OF MUMBAI No. UG/45 of 2018-19

#### CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/247 of 2010, dated 12<sup>th</sup> August, 2010 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Board of Studies in Electrical Engineering at its meeting held on 9<sup>th</sup> April, 2018 have been accepted by the Academic Council at its meeting held on 5<sup>th</sup> May, 2018 <u>vide</u> item No. 4.56 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. and B.E. in Instrumentation Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

ellerande

(Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI – 400 032 25<sup>4</sup> June, 2018

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9<sup>th</sup> January, 2018.)

\*\*\*\*\*

#### A.C/4.56/05/05/2018

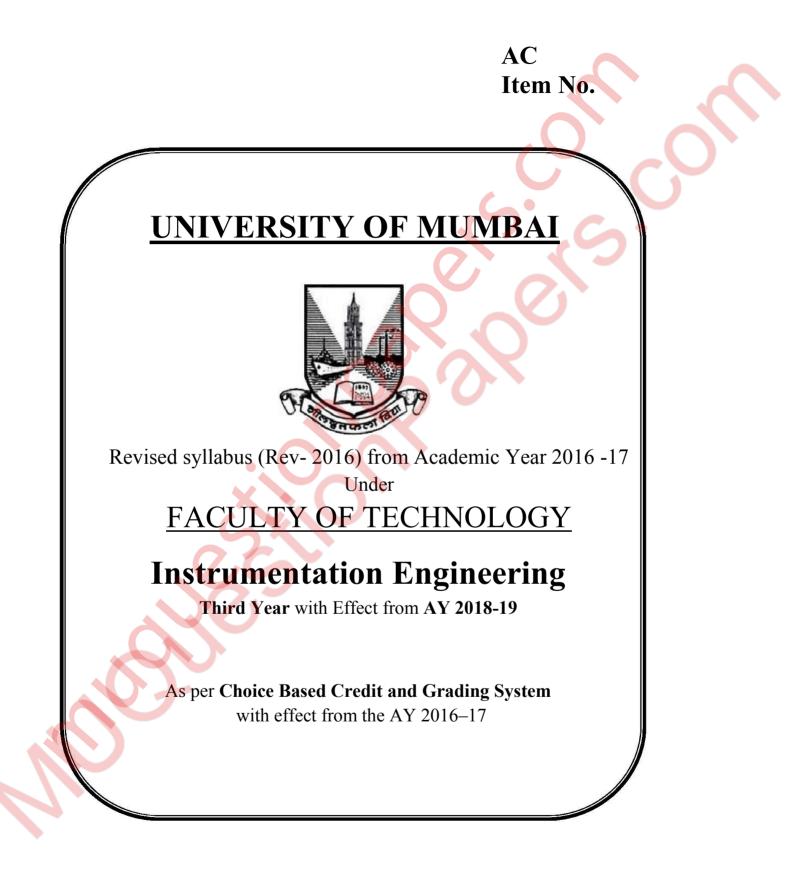
No. UG/ 45 - A of 2018

MUMBAI-400 032 25 June, 2018

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,

2) The Chairman, Board of Studies in Electrical Engineering,


3) The Director, Board of Examinations and Evaluation,

4) The Director, Board of Students Development,

5) The Co-Ordinator, University Computerization Centre,

ugawh

(Dr. Dinesh Kamble) I/c REGISTRAR



# From Co-coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

# **Preamble:**

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

#### **Program Educational Objectives (PEOs)**

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- > Graduates will undertake research activities in emerging multidisciplinary fields.

# **Program Outcomes (POs)**

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
  - Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

#### Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19) Scheme for Semester V

| Course        | Course Name                                             |            | aching Sch<br>ontact Ho |              | Credits Assigned |               |              |       |  |
|---------------|---------------------------------------------------------|------------|-------------------------|--------------|------------------|---------------|--------------|-------|--|
| Code          | Course Maine                                            | Theo<br>ry | Practic<br>al           | Tutori<br>al | Theory           | Practi<br>cal | Tutoria<br>l | Total |  |
| ISC501        | Signals and Systems                                     | 4          | -                       | -            | 4                |               | -            | 4 1   |  |
| ISC502        | Applications of<br>Microcontroller                      | 4          | -                       | -            | 4                | <b>)</b>      | C            | 4     |  |
| ISC503        | Control System Design                                   | 4          | -                       | -            | 4                | -             |              | 4     |  |
| ISC504        | Control System<br>Components                            | 4          | -                       |              | 4                | 0             |              | 4     |  |
| ISDLO50<br>1X | Department Level<br>Optional Course I                   | 3          | -                       |              | 3                |               | -            | 3     |  |
| ISL501        | Business Communication<br>and Ethics                    | -          | 4#                      | 5            | 3                | 2             | -            | 2     |  |
| ISL502        | Applications of<br>Microcontroller – Lab<br>Practice    | -          | 2                       |              |                  | 1             | -            | 1     |  |
| ISL503        | Control System Design<br>Lab Practice                   |            | 2                       | -            | -                | 1             | -            | 1     |  |
| ISL504        | Control System<br>Components – Lab<br>Practice          |            | 2                       | -            | -                | 1             | -            | 1     |  |
| ISL505        | Department Level<br>Optional Course I – Lab<br>Practice | 3          | 2                       | -            | -                | 1             | -            | 1     |  |
| ISL506        | Mini-project – I                                        | -          | 2                       | -            | -                | 1             | -            | 1     |  |
|               | Total                                                   | 19         | 14                      | -            | 19               | 07            | -            | 26    |  |

# Out of four hours, 2 hours theory shall be taught to entire class and 2 hours practical in batches

S

# Examination Scheme for Semester V

|               |                                                         | Examination So                     | cheme                          |              |              |               |       |
|---------------|---------------------------------------------------------|------------------------------------|--------------------------------|--------------|--------------|---------------|-------|
| Course        | Course Name                                             | Theory<br>End Sem<br>Exam<br>(ESE) | Internal<br>Assessment<br>(IA) | Term Work    | Oral         | Pract. & Oral | Total |
| Code          |                                                         | Max<br>Marks                       | Max<br>Marks                   | Max<br>Marks | Max<br>Marks | Max<br>Marks  | Marks |
| ISC501        | Signals and Systems                                     | 80                                 | 20                             |              | (            |               | 100   |
| ISC502        | Applications of<br>Microcontroller                      | 80                                 | 20                             |              |              | -             | 100   |
| ISC503        | Control System<br>Design                                | 80                                 | 20                             |              |              | -             | 100   |
| ISC504        | Control System<br>Components                            | 80                                 | 20                             |              | 2 -          | -             | 100   |
| ISDLO50<br>1X | Department Level<br>Optional Course I                   | 80                                 | 20                             | 50           | -            | -             | 100   |
| ISL501        | Business<br>Communication and<br>Ethics                 | . 0                                |                                | 50           | -            | -             | 50    |
| ISL502        | Applications of<br>Microcontroller – Lab<br>Practice    |                                    |                                | 25           | -            | 25            | 50    |
| ISL503        | Control System<br>Design Lab Practice                   | 2-                                 | -                              | 25           | 25           | -             | 50    |
| ISL504        | Control System<br>Components – Lab<br>Practice          | 2                                  | -                              | 25           | -            | 25            | 50    |
| ISL505        | Department Level<br>Optional Course I –<br>Lab Practice | -                                  | -                              | 25           | 25           | -             | 50    |
| ISL506        | Mini-project – I                                        | -                                  | -                              | 25           | 25           | -             | 50    |
|               | Total                                                   | 400                                | 100                            | 175          | 75           | 50            | 800   |

# Note: As per above Examination Scheme, the Minimum marks are as follows -

| Max. Marks | Min. marks |
|------------|------------|
| 80         | 32         |
| 50         | 20         |
| 25         | 10         |
| 20         | 8          |

#### Program Structure for TE Instrumentation Engineering University of Mumbai (With Effect from 2018-19)

## Scheme for Semester VI

| Course        | Course Name                                        |               | ching Sc<br>ntact He |            |        | Credits A | ssigned  |       |
|---------------|----------------------------------------------------|---------------|----------------------|------------|--------|-----------|----------|-------|
| Code          |                                                    | Theory        | Pract<br>ical        | Tutorial   | Theory | Practical | Tutorial | Total |
| ISC601        | Process Instrumentation<br>System                  | 4             | -                    | 0)         | 4      |           | -        | 4     |
| ISC602        | Industrial Data<br>Communication                   | 3             | -                    | <u>)</u> - | 3      | 5         | -        | 3     |
| ISC603        | Electrical machines and Drives                     | 4             | 2                    | -          | 4      | -         | -        | 4     |
| ISC604        | Digital Signal Processing                          | 4             | -                    |            | 4      | -         | -        | 4     |
| ISC605        | Advanced Control System                            | 3             | ~-                   |            | 3      | -         | -        | 3     |
| ISDL0602<br>X | Department Level Optional Course II                | 3             |                      | -          | 3      | -         | -        | 3     |
| ISL601        | Process Instrumentation<br>System – Lab Practice   |               | 2                    | -          | -      | 1         | -        | 1     |
| ISL602        | Industrial Data<br>Communication – Lab<br>Practice | $\mathcal{O}$ | 2                    | -          | -      | 1         | -        | 1     |
| ISL603        | Electrical machines and<br>Drives – Lab Practice   | -             | 2                    | -          | -      | 1         | -        | 1     |
| ISL604        | Digital Signal Processing –<br>Lab Practice        | -             | 2                    | -          | -      | 1         | -        | 1     |
| ISL605        | Advanced Control System –<br>Lab Practice          | -             | 2                    | -          | -      | 1         | -        | 1     |
| ISL 606       | Mini-project - II                                  | -             | 2                    | -          | -      | 1         | -        | 1     |
|               | Total                                              | 21            | 12                   | -          | 21     | 06        | -        | 27    |

5

# **Examination Scheme for Semester VI**

|                |                                                              |                                | E                              | Examination Schen | ne           |                  |       |
|----------------|--------------------------------------------------------------|--------------------------------|--------------------------------|-------------------|--------------|------------------|-------|
| Course<br>Code | Course Name                                                  | Th<br>End Sem<br>Exam<br>(ESE) | Internal<br>Assessment<br>(IA) | Term Work         | Oral         | Pract. &<br>Oral | Total |
|                |                                                              | Max<br>Marks                   | Max<br>Marks                   | Max<br>Marks      | Max<br>Marks | Max<br>Marks     | Marks |
| ISC601         | Process<br>Instrumentation<br>System                         | 80                             | 20                             | -                 | ?            | Ś                | 100   |
| ISC602         | Industrial Data<br>Communication                             | 80                             | 20                             |                   |              |                  | 100   |
| ISC603         | Electrical machines and Drives                               | 80                             | 20                             |                   |              |                  | 100   |
| ISC604         | Digital Signal<br>Processing                                 | 80                             | 20                             |                   | ۲<br>۲       |                  | 100   |
| ISC605         | Advanced Control<br>System                                   | 80                             | 20                             | 5                 | -            |                  | 100   |
| ISDL060<br>2X  | Department Level<br>Optional Course II                       | 80                             | 20                             | <u> </u>          | -            |                  | 100   |
| ISL601         | Process<br>Instrumentation<br>System – Lab Practice <b>(</b> |                                |                                | 25                | 25           |                  | 50    |
| ISL602         | Industrial Data<br>Communication – Lab<br>Practice           |                                | 2                              | 25                | -            | -                | 25    |
| ISL603         | Electrical machines<br>and Drives – Lab<br>Practice          | S                              | -                              | 25                | 25           | -                | 50    |
| ISL604         | Digital Signal<br>Processing – Lab<br>Practice               | -                              | -                              | 25                | -            | 25               | 50    |
| ISL605         | Advanced Control<br>System – Lab Practice                    | -                              | -                              | 25                | -            | 25               | 50    |
| ISL 606        | Mini-project - II                                            | -                              | -                              | 25#               | -            | -                | 25    |
|                | Total                                                        | 480                            | 120                            | 150               | 50           | 50               | 850   |

# Note: As per above Examination Scheme, the Minimum marks are as follows -

| Max. Marks | Min. marks |
|------------|------------|
| 80         | 32         |
| 50         | 20         |
| 25         | 10         |
| 20         | 8          |

# Mini-project based on internal oral and project report.

| Subject<br>code | Subject Name        | Teaching scheme |        |      | Credit assigned |        |      |       |  |
|-----------------|---------------------|-----------------|--------|------|-----------------|--------|------|-------|--|
| <b>ISC501</b>   | Signals and Systems | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |
|                 |                     | 4               | -      | -    | 4               | -      | -    | 4     |  |

| Sub    | Subject Name | Examination scheme |                       |         |      |      |        |      |       |  |
|--------|--------------|--------------------|-----------------------|---------|------|------|--------|------|-------|--|
| Code   |              | Theory             | (out of 1             | 00)     |      | Term | Pract. | Oral | Total |  |
|        |              | Internal           | Assessn               | End Sem | work | and  |        |      |       |  |
|        |              | Test1              | Test1 Test2 Avg. Exam |         |      |      | Oral   |      |       |  |
| ISC501 | Signals and  | 20                 | 20                    | 20      | 80   | -    | -      | -    | 100   |  |
|        | Systems      |                    |                       |         |      |      |        |      |       |  |
|        |              |                    |                       |         |      |      |        | •    | •     |  |
|        |              |                    |                       |         |      |      |        |      |       |  |

)

| Subject Code          | Subject Name                                                                                                         | Credita     |  |  |  |  |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|
| Subject Code          | Subject Name                                                                                                         | Credits     |  |  |  |  |  |  |  |
| ISC501                | Signals and Systems                                                                                                  | 4           |  |  |  |  |  |  |  |
| Course                | To learn fundamental characteristics of signals and systems.                                                         |             |  |  |  |  |  |  |  |
| Objective             | 2. To classify the signals and systems according to their property.                                                  |             |  |  |  |  |  |  |  |
|                       | . To acquire knowledge for the use of mathematical transforms and their applications.                                |             |  |  |  |  |  |  |  |
|                       | 4. Develop basic problem solving skills and become family                                                            | iliar with  |  |  |  |  |  |  |  |
|                       | application area of signals and systems.                                                                             |             |  |  |  |  |  |  |  |
| <b>Course Outcome</b> | Students will be able to –                                                                                           |             |  |  |  |  |  |  |  |
|                       | 1. Describe the basic concept of signals and systems and their cla<br>and operations on signals and plot the result. | ssification |  |  |  |  |  |  |  |
|                       | 2. Examine analysis of LTI systems using convolution and correlation                                                 | ion.        |  |  |  |  |  |  |  |
|                       | 3. Execute Fourier series analysis of periodic signals.                                                              |             |  |  |  |  |  |  |  |
|                       | 4. Demonstrate Fourier Transform and its applications.                                                               |             |  |  |  |  |  |  |  |
|                       | 5. Explain application of Laplace transform for analysis of CT si systems.                                           | ignals and  |  |  |  |  |  |  |  |
|                       | 6. Demonstrate an ability to apply Z Transform for the analys signals and systems.                                   | sis of DT   |  |  |  |  |  |  |  |
|                       |                                                                                                                      |             |  |  |  |  |  |  |  |

# Details of Syllabus:

**Prerequisite:** Knowledge of Fundamentals of Engineering Mathematics, Basic understanding of Differential and Integral calculus, Knowledge of Fourier Analysis and Laplace Transform

| Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs | CO<br>mapping |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | <b>Introduction</b> :-Signals and Systems definition, Types of signals, continuous time and Discrete time signal operations, Amplitude scaling, Time shifting, Time reversal, Time scaling, Multiple transformation, Mathematical operations additions, subtraction, multiplication of signals, Classification of signals according to their property, Periodic/Aperiodic, Even/Odd, Energy/Power/Causal/Non causal, Deterministic/Random | 12  | COI           |
|        | Energy/Power/Causal/Non causal, Deterministic/Random signals, Classification of systems according to their property, Linear/Nonlinear, Static /Dynamic, Time Invariant/Time                                                                                                                                                                                                                                                               |     |               |

|   | variant, Causal/non causal, Stable/Unstable, Invertible/Non<br>Invertible systems.                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|
| 2 | <b>Linear Time Invariant System</b> : -Characterizing CT LTI and<br>DT LTI systems in terms of Impulse responses and Differential<br>equations, Property of LTI systems, Convolution Integral and<br>Convolution sum representation of LTI systems, Auto and<br>Cross correlation of signals                                                                                                                                                                                                                       | 6  | CO2        |
| 3 | <b>Fourier Series</b> : -Fourier series of CT and DT signals and their property, Dirichlet's condition, Exponential and Trigonometric Fourier series of periodic signals, Parseval's formula, Gibbs phenomenon, Amplitude and phase spectra of periodic signals.                                                                                                                                                                                                                                                   | 5  | CO3        |
| 4 | <b>Fourier Transform Analysis of Signals</b> : -Fourier transform of CT and DT signals, Property of Fourier Transform, Magnitude and Phase calculation, Application of Fourier Transform.                                                                                                                                                                                                                                                                                                                          | 6  | <b>CO4</b> |
| 5 | Application of Laplace Transform in Signal processing: -<br>Bilateral and Unilateral Laplace Transform of signals, Region<br>of Convergence, Properties of Laplace Transform, Inverse<br>Laplace Transform, Solution to differential equation, System<br>transfer function and Response calculations, Poles and Zeros<br>representation.                                                                                                                                                                           | 7  | CO5        |
| 6 | <b>Introduction to Z Transform</b> : -Z Transform definition,<br>Region of convergence and it's property, Bilateral and<br>Unilateral Z Transform, Z Transform property, Relation<br>between Laplace Transform, Fourier Transform and Z<br>Transform, Inverse Z Transform by Inspection, Partial fraction<br>and power series method, System function and Response<br>calculations, Poles and Zeros representation, Concept of<br>Causality and Stability, Frequency Response calculation by<br>using Z Transform. | 12 | CO6        |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **Text Books:**

- 1. Oppenheim, Willsky, S.Hamid Nawab, "Signals and Systems" PHI,2<sup>nd</sup> edition, 2002.
- 2. M.J. Roberts, "Signals and Systems" McGraw-Hill, 1<sup>st</sup> edition,2003.
- 3. B.P Lathi, "Principles of linear systems and signals" Oxford,2<sup>nd</sup> edition,2009.
- 4. Narayana Iyer, "Signals and Systems" CENGAGE Learning,1st edition, 2011.

# **Reference Books:**

- 1. V. Krishnaveni, A. Rajeswari, "Signals and Systems", 1<sup>st</sup> editionWiley India,2012.
- 2. J.B. Gurung, "Signals and Systems", PHI,1<sup>st</sup> edition,2009.
- 3. A Anandkumar, "Signals and Systems", PHI,3<sup>rd</sup> edition, 2013.
- 4. Rameshbabu, "Signals and Systems", SCITECH, 4<sup>th</sup>edition,2011.
- 5. Hwei P. Hsu, "Schaum's Outline of Signals and Systems", McGraw-Hill, 2014.
- 6. Simon Haykin, "Signals and Systems", Wiley, 2<sup>nd</sup>edition, 2003.
- 7. Rodger E. Ziemer, "Signals and Systems", Pearson, 4<sup>th</sup> edition, 1998.

| Subject       | Subject Name    | Teaching | Credits Assigned |      |        |        |      |       |  |
|---------------|-----------------|----------|------------------|------|--------|--------|------|-------|--|
| Code          |                 | Scheme   |                  |      |        |        |      |       |  |
| <b>ISC502</b> | Applications of | Theory   | Pract            | Tut. | Theory | Pract. | Tut. | Total |  |
|               | Microcontroller |          |                  |      |        |        |      |       |  |
|               |                 | 4        | -                | -    | 4      | -      | -    | 4     |  |

| 150502        | Microcontrol |        | neory      |        | Tut.  | Theo | or y | Place. | Tut.     | Total |   |
|---------------|--------------|--------|------------|--------|-------|------|------|--------|----------|-------|---|
|               |              |        | 4          | -      | -     |      | 4    | -      | -        | 4     |   |
|               |              |        |            |        |       |      |      |        |          |       |   |
| Subject       | Subject      | Exam   | ination so | cheme  |       |      |      |        |          |       |   |
| Code          | Name         | Theor  | y Marks    | (100)  |       |      | Term | Pract. | Oral     | Total |   |
|               |              | Interr | al Assess  | ment(2 | 0) E1 | nd   | work | and    |          |       |   |
|               |              | Test1  | Test2      | Avg.   | Se    | em   |      | Oral   |          |       |   |
|               |              |        |            |        | E     | xam  |      |        |          |       |   |
| <b>ISC502</b> | Applications | 20     | 20         | 20     | )     | 80   | S    | -      |          | 100   |   |
|               | of           |        |            |        |       |      |      |        | <b>^</b> |       |   |
|               | Microcontro  |        |            |        |       | 0    |      |        |          |       |   |
|               | ller         |        |            |        |       |      |      |        |          |       |   |
|               |              |        |            |        |       |      |      |        |          |       | _ |
| ~ · · ·       |              |        |            | a      |       | -    |      |        |          | ~     | 7 |

| Subject Code             | Subject Name                                                  | Credits         |
|--------------------------|---------------------------------------------------------------|-----------------|
| ISC502                   | <b>Applications of Microcontroller</b>                        | 4               |
| <b>Course objectives</b> | 1. To give overview of embedded systems and make aw           | are of design   |
|                          | challenges and technology.                                    |                 |
|                          | 2. To impart knowledge of fundamentals of MCS-51 m            | nicrocontroller |
|                          | family and working of the system.                             |                 |
|                          | 3. To make the students understand various programmi          |                 |
|                          | development of software using assembly and higher leve        | l language.     |
|                          | 4. To give knowledge of integrated hardware of MCS-51         |                 |
|                          | 5. To give knowledge of interfacing of MCS-51 with differ     |                 |
|                          | devices such as LCD, keyboard, Memory, ADC, DAC et            |                 |
|                          | 6. To make the students capable to develop application        | using learned   |
|                          | concepts of hardware, software and interfacing.               |                 |
| Course Outcomes          | The students will be able to:                                 |                 |
|                          | 1. Identify the technology in the area of embedded systems.   |                 |
|                          | 2. Explain the comparative study of various microco           | ntrollers and   |
|                          | microprocessors                                               |                 |
|                          | 3. Outline the knowledge of operation of integrat             | ed hardware     |
|                          | components.                                                   |                 |
|                          | 4. Explain programming tools and design software program      | is in assembly  |
|                          | or 'C' language.                                              | ta with MCC     |
|                          | 5. Solve and construct interfacing of peripheral componer 51. | its with MCS    |
|                          | 6. Investigate, recommend and design the sophisticated app    | lightion based  |
|                          | on MCS-51 such as Traffic light control, Digital weig         |                 |
|                          | etc.                                                          | ming machine    |
|                          |                                                               |                 |
|                          |                                                               |                 |
| -                        |                                                               |                 |

#### **Details of Syllabus:**

Prerequisite: Knowledge of Digital Electronics, Programming skills.

| Module | Content                                                                                                                                                                                                                                                                                                                                                     | Hrs | CO<br>Mapping |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | Introduction to Embedded systems<br>Definition, embedded system overview, Examples of embedded<br>system, Development challenges, embedded processors, IC<br>technology and Design Technology and tradeoffs. RISC and CISC                                                                                                                                  |     | 0             |
|        | processors<br><b>Introduction to Microprocessors and Microcontrollers</b><br>Microprocessor Definition, Microcontroller Definition Operation of<br>ALU, Evolution of Microprocessors, Block Diagram of<br>microprocessor based system and development cycle.                                                                                                | 08  | CO1           |
| 2      | MCS-51 microcontroller<br>Architecture of MCS 51 family of microcontroller, and its Variants<br>and comparison. Comparison of microprocessor & microcontroller.<br>CPU timing and machine cycle. Memory organization, SFRS.                                                                                                                                 | 04  | CO2           |
| 3      | MCS 51 programming and tools<br>Simulator, in-circuit debugger, in-circuit emulator, programmers,<br>integrated development environment (IDE), cross compilers. Merits<br>& demerits of above tools.<br>Assembly language programming process. Programming tools.<br>Instruction set, addressing modes. Programming practice using<br>assembly & C compiler | 10  | CO3           |
| 4      | <b>Integrated peripherals of MCS 51</b><br>Integrated peripherals such as Timers/Counters, parallel I/O ports.<br>Interrupt Structure. Power saving & power down mode. Operation<br>of serial port. Programming for implementation of asynchronous<br>serial communication                                                                                  | 08  | CO4           |
| 5      | MCS 51 Interfacing<br>Interfacing with Memories RAM/EPROM.<br>Interfacing to LCD, 7 segment display, Keyboard, ADC, DAC,<br>relay, opto- isolator, DC motor, Stepper Motor                                                                                                                                                                                  | 12  | CO5           |
| 6      | Case Studies<br>Data acquisition systems, Digital weighing machine, Washing<br>machines, Traffic light controller, Frequency counter, Speed<br>Control of DC motors and similar system design                                                                                                                                                               | 06  | CO6           |

#### Internal Assessment:

5

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- Mazidi M.A., The 8051 Microcontroller & Embedded systems, Pearson Education Second edition. 2006
- 2. Kenneth Ayala, The 8051 Microcontroller, Thomson Delmar Learning, Third Edition.2005
- 3. Steve Heath, Embedded Systems Design, Newnes publication, Second edition, ISBN 0 7506 5546

#### **Reference Books:**

- 1. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-
- 2. Tony Givargis , Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition. ISBN No.812650837X
- P.S. Manoharan , P.S. Kannan, Microcontroller based system design, SciTech Publications (India) Pvt. Ltd. ISBN No. 8183715982
- 4. 8051 / MC151 / MCS251 Datasheets
- 5. Microcontrollers Architecture, Programming, Interfacing and System Design, Pearson Education India; Second edition (2011), ISBN-10: 8131759903.

#### Websites:

- 1. www.atmel.com
- 2. www.microchip.com
- 3. www.nXp.com

| Subject<br>code | Subject Name          | Teach  | ning schei | me   | (      | Credit as | signed |       |
|-----------------|-----------------------|--------|------------|------|--------|-----------|--------|-------|
| 150502          | Control Sustan Design | Theory | Pract.     | Tut. | Theory | Pract.    | Tut.   | Total |
| ISC503          | Control System Design | 4      | -          | -    | 4      | -         | -      | 4     |

| Sub           | Subject Name   | Examin   | ation sch | ieme |         |      |        |      |       |
|---------------|----------------|----------|-----------|------|---------|------|--------|------|-------|
| Code          |                | Theory   | (out of 1 | 00)  |         | Term | Pract. | Oral | Total |
|               |                | Internal | Assessn   | nent | End Sem | work | and    |      |       |
|               |                | Test1    | Test2     | Avg. | Exam    |      | Oral   |      |       |
| <b>ISC503</b> | Control System | 20       | 20        | 20   | 80      | -    |        | - (  | 100   |
|               | Design         |          |           |      |         |      |        |      |       |
|               |                |          |           |      |         |      |        |      |       |

| Subject Code        | Subject Name Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISC503              | Control System Design 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Course<br>Objective | <ol> <li>To develop the skills to represent the system in state space form.</li> <li>To impart knowledge required to design state feedback controller and<br/>state estimator.</li> <li>To develop the skills to design the compensator in time and frequency<br/>domain and to design the PID compensator.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Course Outcome      | <ol> <li>Students should be able to -</li> <li>Obtain state-space model of electrical circuits, translational/rotational mechanical systems and electromechanical systems etc with emphasis of linear time-invariant systems</li> <li>Obtain solution of state equations by using Laplace transform methods Cayley Hamilton method etc.</li> <li>Examine system for its stability, controllability and observability and design controller and observer with given transient specifications.</li> <li>Design Lead, Lag and Lead –lag compensator using time domain method.</li> <li>Design Lead, Lag and Lead –lag compensator using frequency domain method.</li> <li>Study the PID controller tuning by Ziegler Nicholas and Cohen-coordinate to the state of the stat</li></ol> |

# **Details of Syllabus:**

Prerequisite: Knowledge of Matrix algebra, Root-locus, Bode-plot and Nyquist stability criterion.

| Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hrs | CO             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
| 1      | State Space Representation of Continuous Time Systems:                                                                                                                                                                                                                                                                                                                                                                                                                                    | 08  | mapping<br>CO1 |
|        | Terminology of state space representation, advantages of state space<br>representation over classical representation, physical variable form,<br>phase variable forms: controllable canonical form (companion I),<br>observable canonical form (companion II), diagonal/Jordon<br>canonical form (parallel realization), cascade realization, conversion<br>of state model to transfer function. Similarity transformation for<br>diagonalization of a plant matrix, Vander Monde matrix. |     |                |

| 2 | Solution of State Equation:                                         | 06 | CO2 |  |
|---|---------------------------------------------------------------------|----|-----|--|
| 2 | State Transition Matrix and its properties, computation of state    | 00 | 002 |  |
|   | transition matrix using Laplace transformation method, Cayley       |    |     |  |
|   | Hamilton theorem, matrix exponential series and via                 |    |     |  |
|   | diagonalization.                                                    |    |     |  |
| 3 | Analysis and Design of Control System in State Space:               | 10 | CO3 |  |
|   | Controllability, stabilizability, observability and detectability   |    |     |  |
|   | properties. Necessary and sufficiency conditions for complete state |    |     |  |
|   | controllability and observability.State feedback structure, Pole    |    |     |  |
|   | placement design using state feedback. State observers – Full state |    |     |  |
|   | observer.                                                           |    |     |  |
| 4 | Introduction to Compensator:                                        | 10 | CO4 |  |
|   | Derivative and integral error compensation, Analysis of the basic   |    |     |  |
|   | approaches to compensation, cascade compensation, feedback          |    |     |  |
|   | compensation                                                        |    | •   |  |
|   | Compensator Design using Root-locus:                                |    |     |  |
|   | Improving steady-state error and transient response by feedback     |    |     |  |
|   | compensation, cascade compensation, integral, derivative            | •  |     |  |
|   | compensation, Lag, Lead, Lag-Lead compensation                      |    |     |  |
| 5 | Compensator Design using Frequency response:                        | 08 | CO5 |  |
|   | Systems with time delay, transient response through gain            |    |     |  |
|   | adjustment, Lag, Lead, Lag-Lead compensation.                       |    |     |  |
| 6 | PID Controller Design:                                              | 06 | CO6 |  |
|   | PID controller tuning: Ziegler-Nichols method, Cohen-coon           |    |     |  |
|   | method, Designing PID controller using Root-Locus.                  |    |     |  |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **Text Books:**

- 1. K. Ogata, Modern Control Engineering, Prentice Hall of India, 4<sup>th</sup> edition, 2002
- 2. M. Gopal, Control Systems Principles and Design, TMH, New Delhi, 2<sup>nd</sup> edition,2002

#### **Reference Books:**

- 1. Norman S. Nise, Control Systems Engineering, John Wiley and Sons, Inc. 2000.
- 2. Francis Raven, Automatic Control Engineering, 5<sup>th</sup>edition McGraw-Hill International Edition,
- 3. G.C.Goodwin, S.F.Graebe, M.E. Salgado, Control System Design, Pearson education
- 4. B. C. Kuo "Automatic control systems", Prentice Hall of India.
- 5. M. Gopal, Control Systems Principles and Design, TMH, New Delhi, 2<sup>n</sup> edition, 2002.
- 6. Stefani, Shahian, Savant, Hostetter, Design of Feedback Control Systems, Oxford University Press, 4thEdition, 2007.
- 7. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, Addition-Wesley, 1999.
- 8. I.J.Nagrath and M. Gopal, Control System Engineering, 3rdEdition, New Age International (P) Ltd., Publishers 2000.
- 9. B.C. Kuo, Farid Gdna Golnaraghi, Automatic Control Systems, PHI, 7th edition, 2003.
- 10. M. N. Bandopadhay, Control Engineering Theory & Practice, PHI, 2003

| Subject<br>code | Subject<br>Name      | Tea    | ching sch | eme |        | Credit a | ssigned |       |
|-----------------|----------------------|--------|-----------|-----|--------|----------|---------|-------|
|                 | Control              | Theory | Pract     | Tut | Theory | Pract    | Tut     | Total |
| ISC504          | System<br>Components | 4      | -         | -   | 4      | -        | -       | 4     |

|             |                                 |         |            | Exa       | mination    | scheme |       |      |       |
|-------------|---------------------------------|---------|------------|-----------|-------------|--------|-------|------|-------|
| Sub         | Subject                         | Т       | heory (ou  | ut of 100 | )           |        | Pract |      |       |
| Sub<br>Code | Subject<br>Name                 | Interna | al Assessi | ment      | End         | Term   | and   | Oral | Total |
| Cout        | Manie                           | Test1   | Test2      | Avg.      | sem<br>Exam | work   | Oral  | Ulai | Total |
| ISC504      | Control<br>System<br>Components | 20      | 20         | 20        | 80          | ?      | C     |      | 100   |
|             |                                 |         |            |           | 0           |        |       |      |       |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | credits                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| ISC504           | Control System Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 15C304           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                   |
| Course objective | <ol> <li>To impart knowledge of different control system control like Hydraulic, Pneumatic, Electrical &amp; Electronics comparison.</li> <li>To make the students to learn different types of Transmits.</li> <li>To make the students to understand concept of control different types, their working &amp; selection criteria.</li> <li>To make the students to learn various Auxiliary procession components and its applications.</li> <li>To give the students an overview of Industria components &amp; their Need in Instrumentation.</li> </ol> | and their<br>hitters.<br>trol valve,<br>ess control |
| Course Outcome   | <ol> <li>The students will be able to</li> <li>Study, select &amp; implement various pneumatic components &amp; circuits.</li> <li>Select &amp; Compare various control systems like pneumatic &amp; electric.</li> <li>Apply knowledge to classify, select &amp; use various Trant</li> <li>Select, classify &amp; use various control valves &amp; their acc</li> <li>Describe the Need of Auxiliary process control components</li> </ol>                                                                                                             | Hydraulic,<br>Ismitters.<br>cessories.              |
|                  | <ul><li>6. Apply knowledge of Industrial Control Component application.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts & their                                          |

**Prerequisite:** Knowledge of sensors, Measurement system, basic control system and Electrical Engineering.

|        | Control System Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |               |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| Module | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hrs. | CO<br>Mapping |
| 1      | <ul> <li>Pneumatics</li> <li>Introduction to Process and Control system.</li> <li>Pneumatic System Components: ISA symbols, Instrument Air and Plant Air, Air supply system and its components, Air compressors, Pressure regulation devices, air dryers, Directional control valves and special types of pneumatic valve such as Pilot-operated valves, Non-return valves, Flow control valves, Sequence valves, and Time delay valve, Linear actuators-Single-acting, Double-acting, and special type of double-acting cylinder, Rotary actuators- Air motors.</li> <li>Process Control Pneumatics: Volume boosters, Air relays, Pneumatic transmitter, Pneumatic logic gates, Pneumatic Circuits-Standard Symbols used for developing pneumatic circuits, Sequence diagram.</li> </ul> |      | CO1           |
| 2      | <b>Hydraulics</b><br>Hydraulic System Components:Hydraulic pumps(centrifugal, gear, lobe), Pressure regulation method, Loading valves, Hydraulic valves, Hydraulic actuators (cylinder and motor), Speed control circuits for Hydraulic actuators, Selection and comparison of pneumatic, hydraulic and electric systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4    | CO2           |
| 3      | <b>Transmitters</b><br>Need, specifications and classification of transmitters, Need for<br>Standardization of signals, concept of live zero and dead zero,<br>2-wire; 3-wire and 4-wire transmitters and its calibration,<br>Electronic versus pneumatic transmitters, Electronic type<br>transmitters - temperature; Pressure (gauge); differential<br>pressure; level(capacitive type); flow transmitter (magnetic);<br>SMART /Intelligent transmitter; Block schematic and<br>Comparison with conventional transmitter; applications of<br>transmitters, Need for Converters and its calibration -<br>Pneumatic to Electrical and Electrical to Pneumatic converters.                                                                                                                 |      | CO3           |
| 4      | <b>Process Control Valves</b><br>Need and specifications of Control Valve; Control valve<br>terminology; Control valve constructional details; Air to<br>Open(AO), Air to Close (AC); MOC (Material of construction);<br>classification of control valve; applications, advantages,<br>disadvantage of - Globe, Ball, Needle, Butterfly, Diaphragm,<br>Pinch, Gate, Solenoid; Flow characteristics (Inherent and<br>Installed); Valve positioners: necessity, types-motion balance<br>and force-balance, Effect on Performance of control valve;<br>Control Valve Actuators -Electrical, Pneumatic, Hydraulic,<br>Electro-mechanical, and piston actuators; selection guidelines<br>for control valve                                                                                     | 12   | CO4           |

|   |                                                                                                      |   |     | 1 |
|---|------------------------------------------------------------------------------------------------------|---|-----|---|
|   | Auxiliary Process Control Components<br>Alarm annunciators and its sequences; Fire and gas detectors |   |     |   |
|   | (types -flame, gas, fire and gas siren), Feeders, Dampers,                                           | 6 | CO5 |   |
| 5 | Temperature regulator, Flow regulator, Temperature , Flow,                                           |   |     |   |
|   | Level and, Pressure Switch, Relief valves, safety valves and                                         |   |     |   |
|   | rupture disk, Thermostats and Humidistat, Steeper motor                                              |   |     |   |
|   | (working principle)                                                                                  |   |     |   |
|   | Industrial Control Components                                                                        |   |     |   |
|   | Switches: Construction, symbolic representation, working,                                            |   |     |   |
|   | application of Toggle switches, Push buttons, Selector switches,                                     |   |     |   |
|   | DIP switches, Rotary switches, Thumbwheel switches, Drum                                             | 8 | CO6 |   |
|   | switch, Limit switches, emergency push button, Switch                                                |   |     |   |
| 6 | specifications.                                                                                      | C | •   |   |
| 0 | Control Relays: Construction, working, specifications, and                                           |   |     |   |
|   | applications of Electro-mechanical relay, Reed relay,                                                |   |     |   |
|   | hermetically sealed relay, Solid state relays. Interposing relays                                    |   |     |   |
|   | and Overload relays. Contactors/starters: Construction,                                              |   |     |   |
|   | working, specifications and applications of starters and                                             |   |     |   |
|   | contactors. Comparison between relays and starters /contactors.                                      |   |     |   |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

# **Text Books Recommended:**

- 1. Andrew Parr, "Hydraulic & pneumatics"; A Technicians & Engineers Guide, Second Edition
- 2. Bela G. Liptak, "Instrument Engineer's Hand Book Process Control", Chilton Company, 3<sup>rd</sup> Edition, 1995.
- 3. Douglas. M.Considine, "Process Instruments & Control Handbook", McGraw-Hill
- 4. C.L.Albert and D.A. Coggan, "Fundamentals of Industrial Control", ISA, 1992.
- Andrew Williams, "Applied instrumentation in the process industries", 2<sup>nd</sup> Edition, Vol. 1 & 3, Gulf publishing company.
- 6. Guy Borden, Paul G Friedmann, "Control Valves- ISA" style Editor
- 7. FESTO, "Pneumatics workbook Basic Level"
- 8. Fisher, "Control Valve Handbook", Fourth Edition.

| Subject code | Subject<br>Name | Teaching scheme |        |      | Credit assigned |        |      |       |  |
|--------------|-----------------|-----------------|--------|------|-----------------|--------|------|-------|--|
| ISDLO5011    | Advanced        | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |
|              | Sensors         | 3               | -      | -    | 3               | -      | -    | 3     |  |

| Sub Code  | Subject  | Examination scheme |           |         |      |      |        |      |       |
|-----------|----------|--------------------|-----------|---------|------|------|--------|------|-------|
|           | Name     | Theory             | (100)     |         |      | Term | Pract. | Oral | Total |
|           |          | Interna            | ıl Assesm | ent(20) | End  | work | and    |      |       |
|           |          | Test               | Test2     | Avg.    | sem  |      | Oral   |      |       |
|           |          | 1                  |           |         | Exam |      |        |      |       |
| ISDLO5011 | Advanced | 20                 | 20        | 20      | 80   |      | -      |      | 100   |
|           | Sensors  |                    |           |         |      |      |        |      |       |

|                        | 5.5.                                                                                                                             |                                                                                                  |  |  |  |  |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Subject Code           | Subject Name                                                                                                                     | credits                                                                                          |  |  |  |  |  |  |  |  |
| ISDLO5011              | Advanced Sensors                                                                                                                 | 3                                                                                                |  |  |  |  |  |  |  |  |
| Course Objectives      | 1. To expose the students to the concepts of smart sensors microsensors                                                          | <ol> <li>To expose the students to the concepts of smart sensors and<br/>microsensors</li> </ol> |  |  |  |  |  |  |  |  |
|                        | 2. To provide sufficient knowledge about the sensor fabrication.                                                                 |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | 3. To create awareness about the various application fields of smart                                                             |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | sensors.                                                                                                                         |                                                                                                  |  |  |  |  |  |  |  |  |
| <b>Course Outcomes</b> | The students will be able to -                                                                                                   |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | <ol> <li>Explain the various principles employed in transducers</li> <li>Examine the methods of fabricating a sensor.</li> </ol> |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | 3. Apply knowledge in designing smart sensors.                                                                                   |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | 4. Discuss the techniques of fabrication and application of                                                                      | f MEMS.                                                                                          |  |  |  |  |  |  |  |  |
| 0.                     | 5. Describe the various applications of smart sensors.                                                                           |                                                                                                  |  |  |  |  |  |  |  |  |
|                        | 6. Discuss advanced sensing technology.                                                                                          |                                                                                                  |  |  |  |  |  |  |  |  |

# Details of Syllabus:

Prerequisite: Fundamentals of transducers.

|   | Module | Content                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs | CO<br>Mapping |
|---|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 4 | 1      | <b>Review of Fundamental of Sensors:</b><br>Principle of physical and chemical transduction, sensor<br>classification, characterization of mechanical, electrical,<br>optical, thermal, magnetic, chemical and biological sensors,<br>their calibration and determination of characteristics, sensor<br>reliability, reliability models and testing, failure mechanisms<br>and their evaluation, stability studies. | 06  | CO1           |
|   | 2      | Sensor Fabrication:<br>Design considerations and selection criterion as per standards,<br>Sensor fabrication techniques, process details and latest trends<br>in sensor fabrication. Thick film sensing and system design.                                                                                                                                                                                          | 06  | CO2           |

| 3 | Smart Sensors:                                                  | 06 | CO3 |  |
|---|-----------------------------------------------------------------|----|-----|--|
|   | Smart sensor basics, signal conditioning and A/D conversion     |    |     |  |
|   | for sensors, examples of available ICs and their applications.  |    |     |  |
|   | ······································                          |    |     |  |
| 4 | Micro Sensors:                                                  | 06 | CO4 |  |
|   | Introduction, Intrinsic characteristics of MEMS, common         |    |     |  |
|   | fabrication techniques, application of MEMS in sensing          |    |     |  |
|   | systems including pressure sensors, accelerometers,             |    |     |  |
|   | gyroscopes and strain gauges.                                   |    |     |  |
|   |                                                                 |    |     |  |
| 5 | Sensor Applications:                                            | 06 | CO5 |  |
|   | Sensors for different applications like mechanical, electrical, | Co | ٠   |  |
|   | thermal, magnetic, optical, radiation, chemical and biological  |    |     |  |
|   | types.                                                          |    |     |  |
|   |                                                                 |    |     |  |
| 6 | Advanced Sensing Technology:                                    | 06 | CO6 |  |
|   | Sensors, instruments and measurement techniques for             |    |     |  |
|   | emerging application areas such as environmental                |    |     |  |
|   | measurement like DO(dissolves oxygen),BOD (biological           |    |     |  |
|   | oxygen demand),COD(chemical oxygen demand)TOC(total             |    |     |  |
|   | organic carbon)Cox(carbon dioxides)NOx(nitrogen oxide),for      |    |     |  |
|   | navigation and inertial measurements, for agricultural          |    |     |  |
|   | measurements such as soil moisture, wind speed, leaf wetness    |    |     |  |
|   | duration, sensors for food processing like smell or odour,      |    |     |  |
|   | taste.                                                          |    |     |  |
|   |                                                                 |    |     |  |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

# **Text Books**:

- 1. Chang Liu, "Foundations of MEMS", Pearson Education Inc., 2012.
- 2. Stephen D Senturia, "Microsystem Design", Springer Publication, 2000.
- 3. Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" Tata McGraw Hill, New Delhi, 2002.

- 4. Jacob Fraden ,"Handbook of Modern Sensors", 2nd Ed.
- 5. S. M. Sze," Semiconductor Sensors".
- 6. M J Usher, "Sensors and Transducers, MacMillan", 1985.

#### **References:**

1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

2. Mohamed Gad-el-Hak, editor, "The MEMS Handbook", CRC press Baco Raton, 2001.

3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, "Micro Sensors MEMS and Smart Devices", John Wiley & Son LTD, 2002.

4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.

5. Thomas M. Adams and Richard A.Layton, "Introduction to MEMS, Fabrication and Application," Springer, 2010.

| Subject<br>code | Subject Name | Teaching | g scheme |      | Credit assigned |        |      |       |  |
|-----------------|--------------|----------|----------|------|-----------------|--------|------|-------|--|
| ISDLO5012       | Optimization | Theory   | Pract.   | Tut. | Theory          | Pract. | Tut. | Total |  |
|                 | Techniques   | 3        | -        | -    | 3               | -      | -    | 3     |  |

|                    | Techr | chniques 3 - |                                                                            |                                                              | -          | -           | 3         | -          | -       | 3        |  |  |
|--------------------|-------|--------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------|-------------|-----------|------------|---------|----------|--|--|
|                    |       |              |                                                                            |                                                              |            |             |           |            |         |          |  |  |
| Sub Code           | Subje | ect          | Exami                                                                      | nation sch                                                   | neme       |             |           |            |         |          |  |  |
|                    | Name  |              |                                                                            | (out of 1                                                    |            |             | Term      | Pract.     | Oral    | Total    |  |  |
|                    |       |              |                                                                            | l Assessn                                                    | /          | End Sem     | work      | and        |         |          |  |  |
|                    |       |              | Test1                                                                      | Test2                                                        | Avg.       | Exam        |           | Oral       |         |          |  |  |
| ISDLO5012          | Optin | nization     | 20                                                                         | 20                                                           | 20         | 80          | -         | -          | - (     | 100      |  |  |
|                    |       | niques       |                                                                            |                                                              |            |             |           |            |         |          |  |  |
| Subject Cod        | e     |              |                                                                            | Su                                                           | bject N    | ame 💊       | 5         |            | C       | redits   |  |  |
| ISDLO5012          |       | Optimiz      | ation Te                                                                   | chniques                                                     |            |             |           |            | 3       |          |  |  |
| Course             |       | 1. Stude     | ent shou                                                                   | ld unders                                                    | stand th   | e process   | of optim  | ization, : | formula | ation of |  |  |
| Objective          |       | pract        | ical eng                                                                   | ineering                                                     | problen    | n into opti | imization | problem    | and a   | pplying  |  |  |
|                    |       |              | necessary and sufficient conditions of optimality to check the feasibility |                                                              |            |             |           |            |         |          |  |  |
|                    |       | of the       | f the problem.                                                             |                                                              |            |             |           |            |         |          |  |  |
|                    |       |              | idents should study the concepts of linear as well as nonlinear            |                                                              |            |             |           |            |         |          |  |  |
|                    |       |              |                                                                            | ; methods                                                    |            |             |           |            |         |          |  |  |
|                    |       |              |                                                                            |                                                              |            | em i.e. lin |           |            |         |          |  |  |
|                    |       |              |                                                                            |                                                              |            | n use appro |           |            |         |          |  |  |
|                    |       |              |                                                                            |                                                              |            | to apply n  |           | unconstr   | ained n | nethods  |  |  |
|                    |       |              |                                                                            |                                                              |            | ion proble  | m.        |            |         |          |  |  |
| <b>Course Outc</b> | come  |              |                                                                            | its will be able to –                                        |            |             |           |            |         |          |  |  |
|                    |       |              |                                                                            |                                                              |            | ts of the d |           | ineering   | probler | ns in to |  |  |
|                    |       |              |                                                                            |                                                              | -          | ptimization |           |            |         |          |  |  |
|                    |       |              | -                                                                          | -                                                            |            | or unconst  |           |            | -       |          |  |  |
|                    |       |              |                                                                            | ange mu                                                      | ltiplier a | and KKT     | necessary | conditio   | ons for | solving  |  |  |
|                    |       | probl        |                                                                            |                                                              |            |             |           |            |         |          |  |  |
|                    |       |              |                                                                            |                                                              |            | ng problen  | · /       | n to stan  | dard fo | orm and  |  |  |
|                    |       |              | -                                                                          |                                                              | 1          | simplex n   |           |            |         |          |  |  |
|                    |       |              |                                                                            | ternate form of two-phase simplex method called Big-M method |            |             |           |            |         |          |  |  |
|                    |       |              |                                                                            | rite dual problem for the given LP Problem for solving it.   |            |             |           |            |         |          |  |  |
|                    |       | -            | -                                                                          |                                                              |            | h and dir   | ect searc | h metho    | ds for  | design   |  |  |
|                    |       |              |                                                                            | problems                                                     |            |             |           |            |         |          |  |  |
|                    |       | 6. Use t     | he nume                                                                    | rical met                                                    | hods for   | unconstra   | uned opti | mization.  |         |          |  |  |

# **Details of Syllabus:**

**Prerequisite:** Knowledge of derivative, partial differentiation, Matrix Algebra, Taylor series.

| Module | Contents                                                             | Hr | CO      |
|--------|----------------------------------------------------------------------|----|---------|
| -      |                                                                      | S  | mapping |
| 1      | Introduction to Optimization:                                        | 04 | CO1     |
|        | Definition and meaning of optimization, need of optimization,        |    |         |
|        | optimization problem formulation – statement of an optimization      |    |         |
|        | problem, terminology- design vector, objective function, objective   |    |         |
|        | function surface, design constraints, constraint surface, Iteration, |    |         |
|        | convergence, classification of optimization problem, conventional    |    |         |
|        | versus -optimum design process, - optimal control problem, problem   |    |         |
|        | formulation process, engineering applications of optimization.       |    |         |
|        |                                                                      |    |         |

| 2 | Classical Optimization Techniques:                                    | 04 | CO2      | 1 |
|---|-----------------------------------------------------------------------|----|----------|---|
| 2 | Fundamental concepts- local and global minima, local and global       | 04 | 02       |   |
|   | maxima, quadratic form, necessary and sufficient condition of single  |    |          |   |
|   | and multivariable optimization with no constraints, multivariable     |    |          |   |
|   | optimization with equality and inequality constraints (Kuhn-Tucker    |    |          |   |
|   | condition), Lagrange Theorem, Convex programming problem              |    |          |   |
| 3 |                                                                       | 00 | CO2      |   |
| 3 | Linear Programming – Simplex Method                                   | 08 | CO3      |   |
|   | Definition of linear programming problem (LPP), standard form of      |    |          |   |
|   | LPP, terminology, basic concepts, Simplex Algorithm and flowchart,    |    |          |   |
| 4 | simplex method, two-phase simplex method, Duality in LPP              | 08 | COA      |   |
| 4 | Linear Programming – Revised Simplex Method                           | 08 | CO4      |   |
|   | Duality in linear programming – standard primal LP problem, dual      |    |          |   |
|   | LP problem, Treatment of equality constraints, determination of the   |    |          |   |
|   | primal solution from the dual solution, dual variables as Lagrange    |    |          |   |
| 5 | multipliers, KKT conditions for the LP problem,                       | 04 | COF      | - |
| 3 | Numerical Methods for Unconstrained Optimum Design – Direct<br>Method | 04 | CO5      |   |
|   |                                                                       |    |          |   |
|   | General algorithm for unconstrained minimization methods, rate of     |    |          |   |
|   | convergence, unimodal and multimodal function, reduction of a         |    |          |   |
|   | single variable, one dimensional minimization methods- Equal          |    |          |   |
| ( | Interval method, Golden section search method.                        | 00 | <u> </u> | - |
| 6 | Numerical Methods for Unconstrained Optimum Design –                  | 08 | CO6      |   |
|   | Indirect Method                                                       |    |          |   |
|   | Gradient of a function, Steepest Descent, Conjugate gradient          |    |          |   |
|   | (Fletcher-Reeves), Step size determination – polynomial               |    |          |   |
|   | interpolation, properties of gradient vector, scaling of design       |    |          |   |
|   | variables, Newton's method, Quasi Newton method, DFP method,          |    |          |   |
|   | BFGS method,                                                          |    |          | J |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# Text Books.

1. Jasbir S. Arora, "Introduction to Optimum Design", 3<sup>rd</sup> Edition, Academic Press – 2012.

# **Reference Books**

- 1. S. S. Rao, "Optimization", 3<sup>rd</sup> Enlarged Edition, New Age International (P) Ltd., Publishers, New Delhi, 2010.
- 2. T. E. Edger and D. M. Himmeblaue, "Optimization of Chemical Processes", McGraw Hill International Editions, 1989.
- 3. William L. Luyben, "Process Modeling, Simulation, And Control For Chemical Engineers" McGraw-Hill Publishing Company,1990.
- 4. Kalyanmoy Deb, "Optimization for Engineering Design", Prentice Hall of India (P) Ltd., New Delhi, 1998.
- 5. Ashok D. Belegundu, "Optimization concepts and applications in Engineering", Pearson Education, 2002.

| Course Code Course Name |                    |               | Teaching Scheme (Contact<br>HOURS) |   |        |      |        | Credit Assigned |       |     |       |
|-------------------------|--------------------|---------------|------------------------------------|---|--------|------|--------|-----------------|-------|-----|-------|
|                         | ISDL05013 Database |               | Theory                             | , | Pract. | Tut. | Theory | TW/P            | ract. | Tut | Total |
|                         | Manag              | gement System | 3                                  |   | -      | -    | 3      | -               |       | -   | 3     |

| Sub Code  | Subject Name | Examir  | nation so                   | cheme |      |      |         |      | •     |
|-----------|--------------|---------|-----------------------------|-------|------|------|---------|------|-------|
|           |              | Theory  | out of                      | 100)  |      | Term | Pract & | Oral | Total |
|           |              | Interna | Internal Assessment End sem |       |      |      | Oral    |      |       |
|           |              | Test1   | Test2                       | Avg.  | Exam |      |         |      |       |
|           | Database     | 20      | 20                          | 20    | 80   |      | -       | -    | 100   |
| ISDL05013 | Management   |         |                             |       |      |      |         |      |       |
|           | System       |         |                             |       |      |      |         |      |       |

| Subject Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Subject Name                                                                                                                                                                                                                                                                                                                                                                            | credits     |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| ISDL05013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Database Management System                                                                                                                                                                                                                                                                                                                                                              | 3           |  |  |  |  |
| Course<br>Objectives:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ol> <li>Learn and practice data modeling using the entity-relationshideveloping database designs.</li> <li>Understand the use of Structured Query Language (SQL) and syntax.</li> <li>Apply normalization techniques to normalize the database</li> <li>Understand the needs of database processing and learn techn controlling the consequences of concurrent data access.</li> </ol> | d learn SQL |  |  |  |  |
| Course<br>Outcomes:       The student will be able to:         1. To describe data models and schemas in DBMS.         2. Explain the features of database management systems and database.         3. Use SQL- the standard language of relational databases.         4. Identify the functional dependencies and Design a database         5. Describe the concept of Transactions Management and Comparison of the concept of the con |                                                                                                                                                                                                                                                                                                                                                                                         |             |  |  |  |  |

# Details of Syllabus:

| Mod | le Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs. | CO<br>Mapping |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|
| T   | Introduction Database Concepts: Introduction, Characteristics of databases, File system V/s Database system, Users of Database system, Concerns when using an enterprise database, Data Independence, DBMS system architecture, Database Administrator Entity–Relationship Data Model :<br>Introduction, Benefits of Data Modeling, Types of Models, Phases of Database Modeling, The Entity-Relationship (ER) Model, Generalization, Specialization and Aggregation, Extended Entity-Relationship (EER) Model. | 06   | CO1           |

| 2 | Relational Model and Algebra : Introduction , Mapping the ER and<br>EER Model to the Relational Model , Data Manipulation , Data<br>Integrity ,Advantages of the Relational Model, Relational Algebra ,<br>Relational Algebra Queries, Relational Calculus.                                                                                                                                                                                                        | 06 | CO2 |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 3 | <b>Structured Query Language (SQL) :</b> Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, , Data Manipulation commands, Data Control commands, Views in SQL, Nested and complex queries.                                                                                                                                                                                                                                | 06 | CO3 |  |
| 4 | <ul> <li>Integrity and Security in Database: Domain Constraints,<br/>Referential integrity, Assertions, Trigger, Security, and authorization<br/>in SQL</li> <li>Relational–Database Design : Design guidelines for relational<br/>schema, Function dependencies, Normal Forms- 1NF, 2 NF, 3NF,<br/>BCNF and 4NF</li> </ul>                                                                                                                                        | 08 | CO4 |  |
| 5 | <b>Transactions Management and Concurrency:</b> Transaction concept, Transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Implementation of isolation, Concurrency Control: Lock-based , Timestamp-based , Validation-based protocols, Deadlock handling, Recovery System: Failure Classification, Storage structure, Recovery & atomicity, Log based recovery, Shadow paging. | 06 | CO5 |  |
| 6 | Query Processing and Optimization: Overview ,Issues in QueryOptimization ,Steps in Query Processing , System Catalog orMetadata, Query Parsing , Query Optimization, Access Paths , QueryCode Generation , Query Execution , Algorithms for ComputingSelection and Projection , Algorithms for Computing a Join ,Computing Aggregation Functions, Cost Based Query Optimization .                                                                                  | 04 | CO6 |  |

Internal Assessment consists of two tests out of which, (on Minimum 02 Modules).

#### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **Text Books:**

1. G. K. Gupta :"Database Management Systems", McGraw – Hill.

- 2. Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.

4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management",

Thomson Learning, 5th Edition.

#### **Reference Books :**

1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press

- 2. Mark L. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley
- 3. Sharaman Shah,"Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH
- 5. Debabrata Sahoo "Database Management Systems" Tata McGraw Hill, Schaum's Outline

| Subject   | Subject Name                   |          | Teachi   | ng       | (      | Credits | Assig  | ned   |
|-----------|--------------------------------|----------|----------|----------|--------|---------|--------|-------|
| code      | Subject Name                   | Theo     | Pract    | Tut.     | Theo   | Pract   | Tut.   | Total |
| ISDLO5014 | Fiber Optic<br>Instrumentation | 3        | -        | -        | 3      | -       | )<br>I | 3     |
|           |                                |          |          |          |        |         |        |       |
|           |                                |          | E        | xaminati | on Sch | eme     |        |       |
|           |                                | The      | eory(100 | ))       |        | Prac    | +      |       |
|           |                                | Intern   | nal      | End      |        |         | L      |       |
|           |                                | Assessme | ent(20)  | LIIU     | Ter    | and     |        |       |

|                 |                                |       |                    | Exa   | aminatio   | on Scher | me    |      |       |
|-----------------|--------------------------------|-------|--------------------|-------|------------|----------|-------|------|-------|
|                 |                                |       | Theory             | (100) |            |          | Pract |      |       |
|                 |                                |       | nternal<br>ssment( | 20)   | End        | Ter      | and   |      |       |
| Subject<br>code | Subject Name                   | Test1 | Test<br>2          | Avg.  | sem<br>Exa | m<br>Wor | oral  | Oral | Total |
| ISDLO5014       | Fiber Optic<br>Instrumentation | 20    | 20                 | 20    | 80         | -        | 5     | 9    | 100   |
|                 |                                |       |                    |       |            |          |       |      | •     |

| Subject Code                                            | Subject Name                                                   | Credits    |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------|------------|--|--|--|--|--|
|                                                         |                                                                |            |  |  |  |  |  |
| ISDLO5014                                               | Fiber Optic Instrumentation                                    | 3          |  |  |  |  |  |
| <b>Course Objectives</b>                                | 1. To expose the students to the concepts of optical fiber     | and their  |  |  |  |  |  |
| -                                                       | properties.                                                    |            |  |  |  |  |  |
|                                                         | 2. To acquaint the students with the different types of s      | ources and |  |  |  |  |  |
|                                                         | detectors and their selection.                                 |            |  |  |  |  |  |
|                                                         | 3. To provide sufficient knowledge about the applications o    | f lasers.  |  |  |  |  |  |
|                                                         | 4. To impart adequate awareness about the fiber optic senso    | ors.       |  |  |  |  |  |
| <b>Course Outcomes</b>                                  | The students will be able to                                   |            |  |  |  |  |  |
| course outcomes                                         | 1. Explain the principle of optical fibers and its properties. |            |  |  |  |  |  |
| 2. Examine the various optical losses in the fiber, use |                                                                |            |  |  |  |  |  |
|                                                         | determining faults in the fiber.                               |            |  |  |  |  |  |
|                                                         | 3. Compare the different types of light sources and detectors  |            |  |  |  |  |  |
|                                                         | select one appropriately.                                      |            |  |  |  |  |  |
|                                                         | 4. Explain the various principles of fiber optic sensors.      |            |  |  |  |  |  |
|                                                         | 5. Use optical fiber sensors for different parameter measure   | ment       |  |  |  |  |  |
|                                                         | 6. Investigate the various optical devices.                    | mont.      |  |  |  |  |  |
| Datalla af Callabara                                    | 0. Investigate the various optical devices.                    |            |  |  |  |  |  |

# Details of Syllabus:

**Prerequisite:** Awareness of light theory, Basics of fiber optics, Basics of measurement in Instrumentation.

| Module | Content                                                                                                                                                                                                                                                                                                                            | Hours | CO<br>Mapping |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|
| 1.     | <b>Optical Fibers and their properties</b><br>Ray theory, Principle of light propagation through a fiber, acceptance angle, numerical aperture, skew rays, meridional rays, different types of fibers and their properties.                                                                                                        | 04    | CO1           |
| 2.     | Characteristics of Optical fiber<br>Attenuation, Material absorption losses, scattering losses,<br>bending losses, intermodal and intramodal losses, overall<br>fiber dispersion, polarization, nonlinear phenomena.<br>Optical Fiber measurements: measurements of attenuation,<br>numerical aperture, OTDR, optical power meter. | 04    | CO2           |

| 3 | <b>Optical sources and Detectors</b><br>LED, Lasers, LD, PIN, APD their characteristics,<br>modulation circuits, optical detection principle, LED<br>coupling to fiber, Laser Applications: Lasers in surgery,<br>laser pollution monitoring, laser gyros and laser induced<br>fusion. Optical fiber connection: fiber alignment and joint<br>loss, splices, connectors, couplers. | 06 | CO3 |   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|
| 4 | Fiber Optic Sensors I<br>Introduction to fiber optic sensors, Advantages and<br>disadvantages of FOS, Principle of fiber optic sensors,<br>classification, principle of intensity modulated sensors,<br>phase modulated sensors, wavelength modulated sensors,<br>Fiber Bragg grating sensors, distributed optical fiber<br>sensing                                                | 08 | CO4 | 5 |
| 5 | <b>Fiber Optic Sensors II</b><br>Various concepts used for displacement, temperature, flow, pressure, level measurement along with applications.                                                                                                                                                                                                                                   | 08 | CO5 |   |
| 6 | Optical Amplification and Integrated Optics<br>Optical Amplifiers, Beam splitters, directional couplers,<br>opto isolators, multi-mode interference coupler, optical<br>modulators, optical switches, polarization transformation<br>and frequency translators, optoelectronic integration.                                                                                        | 06 | CO6 |   |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### Text Books:

- 1. Gerd Keiser, : "Fiber Optics Communication".
- Deboo Burros, : "Integrated circuits and semiconductor devices theory and application", 2<sup>nd</sup> edition, McGraw Hill

#### **Reference Books :**

- 1. J. Wilson, J. F.B. Hawkes,: "Opto Electronics An Introduction", Prentice Hall of India New Delhi. 1996.
- 2. John M Senior, "Optical Fiber Communications Principles and Practice",2<sup>nd</sup> edition 1996, Prentice Hall of India,
- 3. D.A.Krohn, "Fiber Optic Sensors- fundamentals and applications "3<sup>rd</sup> edition, ISA
- 4. Cherin,: "Introduction to optical fibers", McGraw Hill
- 5. J.Wilson, Hawkes,"Optoelctronics An introduction ",Prentice Hall International series in optoelectronics.

| Subject | Cubicot Nome                          |                  | Teachi | ng   | (    | Credits | Assig | ned   |
|---------|---------------------------------------|------------------|--------|------|------|---------|-------|-------|
| code    | Subject Name                          | Theo             | Pract  | Tut. | Theo | Pract   | Tut.  | Total |
| ISL501  | Business<br>Communication<br>& Ethics | 02Hrs.<br>(Class | `      | -    | -    | 2       | Ċ.    | 2     |

| Business 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |               |      |         | Ex     | aminatio | on Scher | me    |      |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|------|---------|--------|----------|----------|-------|------|-------|
| Subject<br>codeSubject NameInternal<br>Assessment(20)End<br>semm<br>and<br>oralSubject Name<br>codeTest1Test<br>2Avg.End<br>semm<br>oraland<br>oralBusinessImage: Second |        |               |      | Theory  | y(100) |          | Ten      | Droot |      |       |
| Business                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | Subject Name  | Asse | ssment( |        | sem      | m<br>Wor | and   | Oral | Total |
| & Ethics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ISL501 | Communication | -    |         | -      | 7        | 50       | -     |      | 50    |

## **Course Objectives:**

- 1. To inculcate professional and ethical attitude at the workplace
- 2. To enhance effective communication and interpersonal skills
- 3. To build multidisciplinary approach towards all life tasks
- 4. To hone analytical and logical skills for problem-solving

#### **Course Outcomes:**

A learner will be able to

- 1. Design a technical document using precise language, suitable vocabulary and apt style.
- 2. Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- 3. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- 4. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- 5. Deliver formal presentations effectively implementing the verbal and non-verbal skills.

# List of Assignments:

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

#### Term Work:

Term work shall consist of all assignments from the list. The distribution of marks for term work shall be as follows:

| Book Report                 | (10) Marks |
|-----------------------------|------------|
| Assignments                 | (10) Marks |
| Project Report Presentation | (15) Marks |
| Group Discussion            | (10) Marks |
| Attendance                  | (05) Marks |

# TOTAL: ......(50) Marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

## References

- 1. Fred Luthans, "Organizational Behavior", McGraw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", McGraw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. Sharma R.C. and Krishna Mohan, "Business Correspondence and Report Writing", Tata McGraw-Hill Education
- 7. Ghosh, B. N., "Managing Soft Skills for Personality Development", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2<sup>nd</sup> edition
- 9. Bell, Smith, "Management Communication" Wiley India Edition, 3<sup>rd</sup> edition.
- 10. Dr. Alex, K., "Soft Skills", S Chand and Company
- 11Subramaniam, R., "Professional Ethics" Oxford University Press.
- 12. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 13. https://grad.ucla.edu/asis/agep/advsopstem.pdf

| Subject<br>Code | Subject Name                       | Teaching | g Scheme | 9    | Credits A | ssigned         |   |     |       |
|-----------------|------------------------------------|----------|----------|------|-----------|-----------------|---|-----|-------|
| ISL502          | Applications of<br>Microcontroller | Theory   | Pract.   | Tut. | Theory    | Pract/<br>Oral. | T | ut. | Total |
|                 | Lab Practice                       | -        | 2        | -    | -         | 1               | 9 | -   | 1     |

| Subject       | Subject Name    | Exam                        | ination s |      |      |      |        |      |       |
|---------------|-----------------|-----------------------------|-----------|------|------|------|--------|------|-------|
| Code          |                 | Theory Marks(100)           |           |      |      | Term | Pract. | Oral | Total |
|               |                 | Internal Assessment(20) End |           |      |      | work | and    |      |       |
|               |                 | Test                        | Test2     | Avg. | Sem  |      | Oral   |      |       |
|               |                 | 1                           |           | _    | Exam | 5    |        |      |       |
| <b>ISL502</b> | Applications of |                             |           |      |      | 25   | 25     |      | 50    |
|               | Microcontroller |                             |           |      |      |      |        |      |       |
|               | Lab Practice    |                             |           |      |      |      |        |      |       |

| Subject Code | Subject Name Credits                                                       |
|--------------|----------------------------------------------------------------------------|
| ISL502       | Applications of Microcontroller Lab Practice 1                             |
| Course       | 1. To explain the assembly and 'c' programming concepts.                   |
| objectives   | 2. To explain addressing modes and instruction set of MCS-51 and develop   |
|              | programs using instructions.                                               |
|              | 3. To give knowledge of integrated hardware of MCS-51                      |
|              | 4. To study different SFRs associated with integrated peripherals and to   |
|              | give knowledge of interfacing of MCS-51 with different peripheral          |
|              | devices such as LCD, keyboard, Memory, ADC, DAC etc.                       |
|              | 5. To develop simple application board using MCS-51.                       |
|              | 6. To make the students capable to develop application using learned       |
|              | concepts of hardware, software and interfacing                             |
| Course       | The students will be able to:                                              |
| Outcomes     | 1. Design and develop programs using instructions learned from instruction |
|              | set in assembly or 'c' language.                                           |
|              | 2. Explain the comparative study of various microcontrollers and           |
|              | microprocessors                                                            |
|              | 3. Outline the knowledge of operation of integrated hardware components.   |
|              | 4. Design software programs in assembly or 'C' language.                   |
|              | 5. Solve and construct interfacing of peripheral components with MCS 51.   |
|              | 6. Investigate, recommend and design the sophisticated application based   |
|              | on MCS-51 such as Traffic light control, Digital weighing machine etc.     |
|              |                                                                            |

Syllabus: Same as that of Subject ISC502 Applications of Microcontroller.

# List of Laboratory Experiments/ Assignments:

| Sr.<br>No. | Detailed Content                                                         | CO<br>Mappin<br>g |
|------------|--------------------------------------------------------------------------|-------------------|
| 1          | To develop a program to perform 16 bit Arithmetic and Logical operations | CO1               |
| 2          | To develop a program to perform Code conversion                          | CO1               |

| 3  | To develop a program for generating square wave on port pin with and without timer. | CO3  |
|----|-------------------------------------------------------------------------------------|------|
| 4  | To develop a program for interfacing 7 segments displays with MCS-51                | CO4  |
| 5  | To develop a program for interfacing LCD display with MCS-51                        | CO5  |
| 6  | To develop a program for interfacing keyboard with MCS-51                           | CO5  |
| 7  | To develop a program for Serial Communication with PC.                              | CO3  |
| 8  | To develop a program for interfacing DAC and its application.                       | CO5  |
| 9  | To develop a program for Speed control of DC Motor                                  | ●CO6 |
| 10 | To develop a program for frequency measurement.                                     | CO6  |
| 11 | To develop a program for Stepper motor control                                      | CO6  |
| 12 | To develop a program for implementing traffic light controller.                     | CO6  |
| 13 | Assignment on comparison of various microcontrollers and microprocessors.           | CO2  |

Any additional experiments/assignments based on syllabus which will help students to understand topic/concept.

# **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

#### Term Work:

Term work shall consist of minimum 10 experiments and two assignments. The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignmer     | nts): 10 Marks    |
|--------------------------------------------|-------------------|
| Laboratory work (programs / journal)       | : 10 Marks        |
| Attendance                                 | : 5 Marks         |
| al certification and acceptance of term wo | rk ensures the sa |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name   | Teaching scheme    |   |   | Credit assigned |        |      |       |
|-----------------|----------------|--------------------|---|---|-----------------|--------|------|-------|
| <b>ISL503</b>   | Control System | Theory Pract. Tut. |   |   | Theory          | Pract. | Tut. | Total |
|                 | Design Lab     | -                  | 2 | - | -               | 1      | -    | 1     |
|                 | Practice       |                    |   |   |                 |        |      |       |

| Sub    | Subject Name    | Exami   | nation sc  | heme |         |      |        |      |       |
|--------|-----------------|---------|------------|------|---------|------|--------|------|-------|
| Code   |                 |         |            |      |         | Term | Pract. | Oral | Total |
|        |                 | Interna | ıl Assessı | ment | End sem | work | and    |      |       |
|        |                 |         |            |      | Exam    |      | Oral   |      |       |
|        |                 | Test1   | Test2      | Avg. |         |      |        |      |       |
| ISL503 | Control Systems | -       | -          | -    | -       | 25   | -      | 25   | 50    |
|        | Design Lab      |         |            |      | C       |      |        |      |       |
|        | Practice        |         |            |      |         |      |        |      |       |
|        |                 |         |            |      |         |      | 5      | •    |       |

| Subject Code | Subject Name Credits                                                          |     |
|--------------|-------------------------------------------------------------------------------|-----|
| ISL503       | Control Systems Design Lab Practice                                           |     |
| Course       | 1. To develop the skills needed to represent the system in state space form.  |     |
| Objective    | 2. To impart knowledge required to design state feedback controller and sta   | ate |
|              | estimator.                                                                    |     |
|              | 3. To design the compensator in time and frequency domain.                    |     |
|              | 4. To design the PID compensator.                                             |     |
| Course       | Students will be able to -                                                    |     |
| Outcome      | 1. Obtain state model of a system from transfer function and study similarity |     |
|              | transformation.                                                               |     |
|              | 2. Verify the controllability and observability of the given system.          |     |
|              | 3. Design the controller and observer for the given system with transient     |     |
|              | specifications.                                                               |     |
|              | 4. Obtain solution of state equations.                                        |     |
|              | 5. Design lead, lag, and lag-lead compensator using root-locus and bode-plot  |     |
|              | techniques with given transient specifications.                               |     |
|              | 6. Tune PID controller by using Ziegler-Nichols and Cohen-coon methods for a  |     |
|              | given system represented by transfer function in time and frequency domain.   |     |

# Syllabus same as that of subject ISC503 Control System Design

# Suggested List of Laboratory Experiments:

| Sr. No. | Detailed Contents                                                       | CO    |
|---------|-------------------------------------------------------------------------|-------|
|         |                                                                         | pping |
| 1       | Obtain state models of systems and study similarity transformation.     | C01   |
| 2       | Verify controllability and observability of a given system              | CO2   |
| 3       | Design of state feedback controller in state space using pole placement | CO3   |
| 4       | Design an observer for a given system by using state space method.      | CO3   |
| 5       | Find state transition matrix of a given system                          | CO4   |
| 6       | Design of Lead Compensator using Root-locus technique.                  | CO5   |
| 7       | Design of Lag Compensator using Root-locus technique                    | CO5   |
| 8       | Design of Lag-Lead Compensator using Root-locus technique               | CO5   |

| 9  | Design of Lead Compensator using Bode-plot technique.    | CO5 |
|----|----------------------------------------------------------|-----|
| 10 | Design of Lag Compensator using Bode-plot technique      | CO5 |
| 11 | Design of Lag-Lead Compensator using Bode-plot technique | CO5 |
| 12 | Tuning of PID in Time domain.                            | CO6 |
| 13 | Tuning of PID in Frequency domain.                       | CO6 |

## **Case Study:**

1. Design a controller using time-domain/frequency domain/pole placement approach for an inverted pendulum on a cart and simulate the same using application software.

2. Design a controller using time-domain/frequency domain/pole placement approach for speed control of DC motor and simulate the same using application software.

3. Design a controller using time-domain/frequency domain/pole placement approach for Magnetic levitation system and simulate the same using application software.

4. Design a controller using time-domain/frequency domain/pole placement approach for any other physical system available in laboratory (Flow loop, pressure loop, level loop etc.) and simulate the same using application software.

**Note:** Student can use application software like MATLAB, SCILAB etc. for their practical/case study work.

## **Oral Examination:**

Oral examination will be based on entire syllabus.

#### Term Work:

Term work shall consist of minimum **<u>Eight</u>** Experiments. The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments)       | : 10 Marks |
|-------------------------------------|------------|
| Laboratory work (programs /journal) | : 10 Marks |
| Attendance                          | : 5 Marks  |
|                                     | -          |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code | Subject<br>Name            | Teaching scheme |        |      | Credit assigned |        |      |       |
|-----------------|----------------------------|-----------------|--------|------|-----------------|--------|------|-------|
| <b>ISL504</b>   | Control                    | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |
|                 | System                     | -               | 2      | -    | -               | 1      | -    | 1     |
|                 | Components<br>Lab Practice |                 |        |      |                 |        |      |       |

| Sub           | Subject      | Examinat            | Examination scheme |      |                       |      |       |      |       |  |
|---------------|--------------|---------------------|--------------------|------|-----------------------|------|-------|------|-------|--|
| Code          | Name         | Theory (out of 100) |                    |      |                       | Term | Pract | Oral | Total |  |
| 1             |              | Internal A          |                    | /    | End                   | work | . and |      |       |  |
| 1             |              | Test1               | Test2              | Avg. | sem                   |      | Oral  |      |       |  |
|               |              |                     |                    | -    | Exam                  |      |       |      |       |  |
| <b>ISL504</b> | Control      | -                   | -                  | -    | -                     | 25   | 25    | -    | 50    |  |
| 1             | System       |                     |                    |      |                       |      |       | -    |       |  |
| 1             | Components   |                     |                    |      |                       |      |       |      |       |  |
| '<br>ا        | Lab Practice |                     |                    |      | $\boldsymbol{\Omega}$ |      |       |      |       |  |

| Subject Code     | Subject Name                                                                                             | credits     |
|------------------|----------------------------------------------------------------------------------------------------------|-------------|
| ISL504           | Control System Components Lab practice                                                                   | 1           |
| Course objective | 1. To impart knowledge of different control system comp                                                  | onents like |
| -                | Hydraulic, Pneumatic, Electrical & Electronics comparison.                                               | and their   |
|                  | 2. To make the students to learn different types of Transm                                               | itters.     |
|                  | 3. To make the students to understand concept of con                                                     | trol valve, |
|                  | different types, their working & selection criteria.                                                     |             |
|                  | 4. To make the students to learn various Auxiliary proce                                                 | ess control |
|                  | components and its applications.                                                                         |             |
|                  | 5. To give the students an overview of Industria                                                         | al Control  |
|                  | components & their Need in Instrumentation.                                                              |             |
| Course Outcome   | The students will be able to                                                                             |             |
|                  | 1. Study, select & implement various pneumatic system c                                                  | omponents   |
|                  | & circuits.                                                                                              |             |
|                  | 2. Select & Compare various control systems like                                                         | Hydraulic,  |
|                  | pneumatic & electric.                                                                                    |             |
|                  | 3. Apply knowledge to classify, select & use various Tran                                                |             |
|                  | 4. Select, classify & use various control valves & their acc                                             | essories.   |
|                  | <ol> <li>Describe the Need of Auxiliary process control com<br/>study their industrial usage.</li> </ol> | ponents &   |
|                  | 6. Apply knowledge of Industrial Control Component application.                                          | ts & their  |

Syllabus: Same as that of Subject ISC504 Control System Components.

# List of Laboratory Experiments:

| Sr.<br>No. | Detailed Content                                                                      | CO<br>Mapping |
|------------|---------------------------------------------------------------------------------------|---------------|
| 1          | Study of various pneumatic / hydraulic / electro-pneumatic control system components. | CO1,CO2       |
| 2          | Study and testing of mA / mV / universal calibrator                                   | CO3           |

| 3  | Study operation and calibration of 2-wire DP transmitter for flow or level | CO3 |
|----|----------------------------------------------------------------------------|-----|
|    | measurement.                                                               |     |
| 4  | Study and testing of a two-wire temperature transmitter.                   | CO3 |
| 5  | Study of cut-view section of pneumatically operated control valve.         | CO4 |
| 6  | Calibration of I to P / and /OR P to I converter.                          | CO4 |
| 7  | Study of control valve Flow characteristics.                               | CO4 |
| 8  | Study operation of valve positioner.                                       | CO4 |
| 9  | Study of different types of control valve actuator.                        | CO4 |
| 10 | Study of pressure/temperature/level/flow switches.                         | CO5 |
| 11 | Study of different types of control relay and contactor.                   | CO6 |
| 12 | Study of Alarm Annunciator                                                 | CO5 |
| 13 | Study and testing of solenoid valves.                                      | CO5 |
| 14 | Assignment on Hydraulic system components                                  | CO2 |

Note: \*Factory visit is advised to understand the working of the control system components.

# **Practical/Oral Examination:**

Practical Examination will be based on performing one Experiment in the Laboratory from the List of Experiments given in the syllabus & the Oral Examination will be based on Entire subject.

# **Term Work:**

Term work shall consist of minimum Ten Experiments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignments) | : 10 Marks |
|-------------------------------------------|------------|
| Laboratory work (programs / journal)      | : 10 Marks |
| Attendance (class Room plus Lab Practice) | : 05 Marks |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject<br>Name                        | Teachi     | Feaching scheme     Credit assigned |      |        |        |      |       |
|-----------------|----------------------------------------|------------|-------------------------------------|------|--------|--------|------|-------|
| ISL505          | Advanced<br>Sensors<br>Lab<br>Practice | Theor<br>y | Pract.                              | Tut. | Theory | Pract. | Tut. | Total |
|                 |                                        | -          | 2                                   | -    | -      | 1      | -    | 1     |
|                 |                                        | -          | 2                                   | -    | -      | 1      | -    | 1     |

|        |              | 1                  |          |      |      |        |      |       |    |
|--------|--------------|--------------------|----------|------|------|--------|------|-------|----|
| Sub    | Subject Name | Examination scheme |          |      |      |        |      |       |    |
| Code   |              | Ter                |          |      | Term | Pract. | Oral | Total |    |
|        |              | Interna            | l Assess | ment | End  | work   | And  |       |    |
|        |              | set                |          |      | sem  |        | oral | •     |    |
|        |              | exam               |          |      |      |        |      |       |    |
|        |              | Test1              | Test2    | Avg. |      |        |      |       |    |
| ISL505 | Advanced     | -                  | -        | -    |      | 25     |      | 25    | 50 |
|        | Sensors– Lab |                    |          |      |      |        |      |       |    |
|        | Practice     |                    |          |      |      |        |      |       |    |
|        |              |                    |          |      |      |        |      |       |    |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                 | Credits |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ISL505           | Advanced<br>Sensors Lab                                                                                                                                                                                                                                                                                                                                                                                                      | 1       |
| Course objective | <ol> <li>To expose the students to the concepts of smart sensors<br/>microsensors</li> <li>To provide sufficient knowledge about the sensor fabri</li> <li>To create awareness about the various application field<br/>sensors</li> </ol>                                                                                                                                                                                    | cation. |
| Course Outcome   | <ul> <li>Students will be able to</li> <li>1. Explain the various principles employed in transducers</li> <li>2. Examine the methods of fabricating a sensor.</li> <li>3. Apply knowledge in designing smart sensors.</li> <li>4. Investigate the techniques of fabrication and applic<br/>MEMS.</li> <li>5. Describe the various applications of smart sensors.</li> <li>6. Discuss advanced sensing technology.</li> </ul> |         |

Syllabus: Same as that of Subject ISDLO5011Advanced Sensors

# List of Laboratory Experiments/ Assignments:

| Sr. |                                                                    | СО      |
|-----|--------------------------------------------------------------------|---------|
| No. | Detailed Content                                                   | Mapping |
| 1   | Study and characterization of chemical/electrical/thermal sensors. | CO1     |
| 2   | To study thick film sensing technique.                             | CO2     |
| 3   | Design of smart sensors with signal conditioning.                  | CO3     |

| 4  | To study accelerometer.                          | CO4 |
|----|--------------------------------------------------|-----|
| 5  | To study gyroscope.                              | CO4 |
| 6  | Study of biological sensor.                      | CO5 |
| 7  | Study and calibration of Dissolved Oxygen probe. | CO6 |
| 8  | Assignment on MEMS and its applications.         | CO4 |
| 9  | Assignment on application on advanced sensing .  | CO6 |
| 10 | Assignment on sensor fabrication.                | CO2 |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

# **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

## **Term Work:**

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignments | s) : 10 Marks |
|------------------------------------------|---------------|
| Laboratory work (programs / journal)     | : 10 Marks    |
| Attendance                               | : 5 Marks     |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name               | Teaching scheme |        |      | Credit assigned |        |      |       |
|-----------------|----------------------------|-----------------|--------|------|-----------------|--------|------|-------|
| <b>ISL505</b>   | Optimization               | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |
|                 | Techniques Lab<br>Practice | -               | 2      | -    | -               | 1      | -    | 1     |

| Sub           | Subject Name          | Exami                       | nation sc | heme |              |        |      |       |    |
|---------------|-----------------------|-----------------------------|-----------|------|--------------|--------|------|-------|----|
| Code          |                       |                             |           |      | Term         | Pract. | Oral | Total |    |
|               |                       | Internal Assessment End sem |           |      | work         | and    |      |       |    |
|               |                       |                             |           |      | Exam 🧹       |        | Oral |       |    |
|               |                       | Test1                       | Test2     | Avg. |              |        |      |       |    |
| <b>ISL505</b> | Optimization          | -                           | -         | -    | -            | 25     | 5    | 25    | 50 |
|               | <b>Techniques</b> Lab |                             |           |      | $\mathbf{O}$ |        |      |       |    |
|               | Practice              |                             |           |      |              |        |      |       |    |
|               |                       |                             |           |      |              |        |      |       |    |
|               |                       |                             |           |      |              |        |      |       |    |

| Subject Code            | Subject Name                                                                    | credits          |  |  |  |  |  |
|-------------------------|---------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Subject Code            | Subject Name                                                                    | creuits          |  |  |  |  |  |
| ISL505                  | <b>Optimization Techniques Lab Practice</b>                                     | 1                |  |  |  |  |  |
| <b>Course objective</b> | 1. Student should understand the process of formulation of pra                  | actical          |  |  |  |  |  |
|                         | engineering problems and apply software tools for solving                       | it.              |  |  |  |  |  |
|                         | 2. Students should learn the linear as well as nonlinear method                 | ls of            |  |  |  |  |  |
|                         | optimization for solving engineering design problems and cl                     | noose            |  |  |  |  |  |
|                         | appropriate tools of software for solving these problems.                       |                  |  |  |  |  |  |
| Course Outcome          | Students will be able to –                                                      |                  |  |  |  |  |  |
|                         | 1. Formulate practical design problems having two design variables and          |                  |  |  |  |  |  |
|                         | solve graphically and identify the nature of the problem.                       |                  |  |  |  |  |  |
|                         |                                                                                 | 1                |  |  |  |  |  |
|                         | 2. Apply the simplex method algorithm and solve LPP simplex method numerically. | by two-phase     |  |  |  |  |  |
|                         | 1 2                                                                             |                  |  |  |  |  |  |
|                         | 3. Apply algorithm of simplex method to solve quadratic problem numerically.    | programming      |  |  |  |  |  |
|                         |                                                                                 | aant aan ditiona |  |  |  |  |  |
|                         | 4. Use necessary and sufficient conditions and verify the des                   |                  |  |  |  |  |  |
|                         | for a given search direction for unconstrained optimization                     | 1                |  |  |  |  |  |
|                         | 5. Calculate step size along search direction using search                      | earch methods    |  |  |  |  |  |
|                         | numerically.                                                                    |                  |  |  |  |  |  |
|                         | 6. Apply numerical methods algorithms to solve unconstrained                    | ed problems.     |  |  |  |  |  |

# Syllabus same as that of subject ISDLO5012 Optimization Techniques

# List of Laboratory Experiments/Assignments:

| Sr.<br>No. | Detailed Contents                                                                                       | CO<br>Mapping |
|------------|---------------------------------------------------------------------------------------------------------|---------------|
| 1          | Formulate engineering system design problem as an optimization problem.                                 | CO1           |
| 2          | Problem formulated in Experiment No. 1 should be solved graphically and identify the nature of problem. | CO1           |
| 3          | By using excel solver solve unconstrained and constrained optimization problems create                  | CO2           |

| 4  | Solve LPP by two-phase simplex method numerically and verify the results by using simulation software                                                                                                                                                    | CO3          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5  | Solve quadratic programming problem numerically and verify results by using simulation software.                                                                                                                                                         | CO4          |
| 6  | Verify the descent conditions for a given search direction for unconstrained<br>optimization problem and calculate step size along search direction using Equal<br>Interval Search method numerically and verify results by using simulation<br>software | CO5          |
| 7  | Verify the descent conditions for a given search direction for unconstrained<br>optimization problem and calculate step size along search direction using Golden<br>Section Search method numerically and verify results by using simulation<br>software | C <b>O</b> 5 |
| 8  | Solve nonlinear optimization problems by using numerical optimization methods (indirect) steepest-descent and conjugate-gradient methods verify the results by using simulation software.                                                                | CO6          |
| 9  | Solve nonlinear optimization problems by using numerical optimization methods (indirect) Newton's methods verify the results by using simulation software.                                                                                               | CO6          |
| 10 | Solve nonlinear optimization problems by using numerical optimization methods (indirect) DFP and BFGS methods verify the results by using simulation software.                                                                                           | CO6          |

**Case Study:** Each student shall solve one practical design optimization problem and submit the case – study report.

Any other additional experiments based on syllabus which will help students to understand topic/concept.

# **Oral Examination:**

Oral examination will be based on entire syllabus

#### Term Work:

Term work shall consist of minimum Eight experiments / assignments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/Assignments) : 1 | U Walks |
|-----------------------------------------------|---------|
| Laboratory work (Programs/Journal) : 1        | 0 Marks |
| Attendance : 5                                | 5 Marks |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Course<br>Code |                    | Teaching S<br>HOURS) | Scheme (O | Contact | Credit A | ssigned   |     |       |
|----------------|--------------------|----------------------|-----------|---------|----------|-----------|-----|-------|
|                | Database           | Theory               | Pract.    | Tut.    | Theory   | TW/Pract. | Tut | Total |
| ISL505         | Management System- | -                    | 2         | -       | -        | 1         | -   | 1     |
|                | Lab Practice       |                      |           |         |          |           |     |       |
|                | •                  |                      | •         | •       | •        |           |     | •     |

| Sub    | Subject Name | Exami               | nation sc | heme    |              |      |        |      |       |
|--------|--------------|---------------------|-----------|---------|--------------|------|--------|------|-------|
| Code   |              |                     |           |         |              | Term | Pract. | Oral | Total |
|        |              | Internal Assessment |           | End sem | work         | and  |        |      |       |
|        |              |                     |           | Exam    |              | Oral |        |      |       |
|        |              | Test1               | Test2     | Avg.    |              |      |        |      | Č     |
| ISL505 | Database     | -                   | -         | -       | -            | 25   | -      | 25   | 50    |
|        | Management   |                     |           |         | 6            |      |        |      |       |
|        | System Lab   |                     |           |         |              |      |        |      |       |
|        | Practice     |                     |           |         |              |      |        |      |       |
|        |              |                     |           |         | $\mathbf{O}$ |      |        |      |       |
|        |              |                     |           |         |              |      |        |      |       |

| Course     | 1. Learn and practice data modeling using the entity-relationship and developing       |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| objectives | database designs.                                                                      |  |  |  |  |  |
|            | 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.         |  |  |  |  |  |
|            | 3. Apply normalization techniques to normalize the database                            |  |  |  |  |  |
|            | 4. Understand the needs of database processing and learn techniques for controlling    |  |  |  |  |  |
|            | the consequences of concurrent data access                                             |  |  |  |  |  |
|            | The student will be able to:                                                           |  |  |  |  |  |
| Course     |                                                                                        |  |  |  |  |  |
| Outcomes   | 1. To model or design ER diagram based on the given schema or case study.              |  |  |  |  |  |
|            | 2. Use SQL- the standard language of relational databases.                             |  |  |  |  |  |
|            | 3. Use a desktop database package to create, populate, maintain, and query a database. |  |  |  |  |  |
|            | 4. Apply the concept of integrity and Security in Database:                            |  |  |  |  |  |
|            | 5. Apply the concepts of Transaction Management and Concurrency.                       |  |  |  |  |  |

Syllabus: Same as that of Subject ISDLO5013 Database Management System.

# Suggested List of Programming Assignments/Laboratory Work:

|  | Sr.<br>No. | Detailed Content                                                                                                                                       | CO<br>Mapping |
|--|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|  | 1          | Experiment to study different phases of database design. Design ER and EER diagram for company database and convert it into relational model (Schema). | CO1           |
|  | 2          | Experiment to study DDL statements and Integrity constraint                                                                                            | CO2           |
|  | 3          | Experiment to study DML commands.                                                                                                                      | CO2           |
|  | 4          | Experiment to study Simple queries and Nested Queries.                                                                                                 | CO2,CO3       |
|  | 5          | Experiment to study complex and Co-related queries                                                                                                     | CO2,CO3       |
|  | 6          | Experiment to study different types of Joins.                                                                                                          | CO2,CO3       |
|  | 7          | Experiment to study View.                                                                                                                              | CO2,CO3       |
|  | 8          | Execution of procedure and functions by using SQL Server                                                                                               | CO3           |

| 9  | Execution of different types of triggers.                                                                                                                 | CO4             |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 10 | Experiment to study TCL and DCL commands.                                                                                                                 | CO5             |
| 12 | Designing a database application using the overall database design process and implement queries, views, triggers, procedures and functions for the same. | CO1,CO2,<br>CO3 |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

# **Oral Examination:**

Oral examination will be based on entire syllabus.

## Term Work:

Term work shall consist of minimum 10 experiments. The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments)        | : 10 Marks |  |
|--------------------------------------|------------|--|
| Laboratory work (programs / journal) | : 10 Marks |  |
| Attendance                           | : 5 Marks  |  |
|                                      |            |  |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Sub    | Sach in a Nama                                  | <b>Teaching Scheme(Hrs)</b> |        |      | Credits Assigned |        |      |       |
|--------|-------------------------------------------------|-----------------------------|--------|------|------------------|--------|------|-------|
| cod    | Subject Name                                    | Theory                      | Pract. | Tut. | Theory           | Pract. | Tut. | Total |
| ISL505 | Fiber Optic<br>Instrumentation<br>-Lab Practice | -                           | 2      | -    | -                | 1      | -    | 1     |

| Sub           | Subject Name    | Exami   | nation sc | heme |         |      |        |      |       |
|---------------|-----------------|---------|-----------|------|---------|------|--------|------|-------|
| Code          |                 |         |           |      |         | Term | Pract. | Oral | Total |
|               |                 | Interna | l Assessi | ment | End sem | work | and    |      |       |
|               |                 |         |           |      | Exam    |      | Oral   |      |       |
|               |                 | Test1   | Test2     | Avg. |         |      |        |      |       |
| <b>ISL505</b> | Fiber Optic     | -       | -         | -    | -       | 25   | -      | 25   | 50    |
|               | Instrumentation |         |           |      | C       |      |        |      |       |
|               | Lab Practice    |         |           |      |         |      |        |      |       |
|               |                 |         |           |      |         |      |        |      |       |
|               |                 |         |           |      |         |      |        |      |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Credits               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| ISL505            | Fiber Optic Instrumentation-Lab Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                     |
| Course Objectives | <ol> <li>To expose the students to the concepts of optical fibe<br/>properties.</li> <li>To acquaint the students with the different types of se<br/>detectors and their selection.</li> <li>To provide sufficient knowledge about the appli-<br/>lasers.</li> <li>To impart adequate awareness about the fiber optic ser</li> </ol>                                                                                                                                                                                      | ources and cations of |
| Course Outcomes   | <ol> <li>The students will be able to         <ol> <li>Explain the principle of optical fibers and its properties.</li> <li>Examine the various optical losses in the fiber, use of determining faults in the fiber.</li> <li>Compare the different types of light sources and deta select one appropriately.</li> <li>Explain the various principles of fiber optic sensors.</li> <li>Use optical fiber sensors for different parameter measure</li> <li>Investigate the various optical devices.</li> </ol> </li> </ol> | ectors and            |

Syllabus: Same as that of Subject ISDLO5014 Fiber Optic Instrumentation

# List of Laboratory Experiments/ Assignments:

| Sr.<br>No. | Detailed Content                                  | CO<br>Mapping |
|------------|---------------------------------------------------|---------------|
| 1          | To study the optical fiber system set-up          | CO1           |
| 2          | To measure numerical aperture of an optical fiber | CO2           |
| 3          | To study attenuation losses in optical fiber      | CO2           |
| 4          | To study dispersion losses in optical fiber       | CO2           |

| 5  | To study characteristics of optical sources and detectors   | CO3 |
|----|-------------------------------------------------------------|-----|
| 6  | To study OTDR                                               | CO3 |
| 7  | To study optical power meter                                | CO3 |
| 8  | To study different splicing techniques                      | CO3 |
| 9  | To study characteristics of opto-coupler.                   | CO6 |
| 10 | Design of an optical fiber sensor.                          | CO4 |
| 11 | Assignment on various applications of optical fiber sensor. | CO5 |
| 12 | Assignment on various application of Laser technology       | CO5 |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

# **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignments | s): 10 Marks |
|------------------------------------------|--------------|
| Laboratory work (programs / journal)     | : 10 Marks   |
| Attendance                               | : 5 Marks    |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject       | Subject   | Teaching | g scheme |      | Credit assigned |        |      |       |  |
|---------------|-----------|----------|----------|------|-----------------|--------|------|-------|--|
| code          | Name      |          |          |      |                 | 1      | 1    |       |  |
| <b>ISL506</b> | Mini      | Theory   | Pract.   | Tut. | Theory          | Pract. | Tut. | Total |  |
|               | Project-I | -        | 2        | -    | -               | 1      | -    | 1     |  |

| Sub<br>Code | Subject<br>Name    | Examina<br>Theory ( |                   |            |                    | Term | Pract         | Oral | Total |
|-------------|--------------------|---------------------|-------------------|------------|--------------------|------|---------------|------|-------|
|             |                    | Internal<br>Test1   | Assessme<br>Test2 | nt<br>Avg. | End<br>sem<br>Exam | work | . and<br>Oral |      | C     |
| ISL506      | Mini Project-<br>I | -                   | -                 | -          | -                  | 25   | -             | 25   | 50    |

## Term Work:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned from the courses studied to solve/implement predefined challenging practical problems of interdisciplinary nature .The students undergo various laboratory/tutorial/simulation laboratory courses in which they do experimentation based on the curriculum requirement. The students should be encouraged to take challenging problems of interdisciplinary nature. The emphasis should be on

• Learning additional skills

• Development of ability to define and design the problem and lead to its accomplishment with proper planning.

• Learn the behavioral science by working in a group.

The group may be of maximum four (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The final examination will be based on demonstration in front of internal and external examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the completed task.

The students may use this opportunity to learn different design techniques in instrumentation, control and electronics. This can be achieved by making a proper selection of Mini Project.

| Subject<br>code | Subject Name    | Teaching | g schem | e (Hrs) | Credit assigned |       |     |       |  |
|-----------------|-----------------|----------|---------|---------|-----------------|-------|-----|-------|--|
| ISC 601         | Process         | Theory   | Pract   | Tut     | Theory          | Pract | Tut | Total |  |
|                 | Instrumentation | 4        | -       | -       | 4               | -     | -   | 4     |  |
|                 | System          |          |         |         |                 |       |     |       |  |

| Sub        | Subject Name                         | Exan                                  | ninatio   | n scheme | )                  |      |             |      |       |
|------------|--------------------------------------|---------------------------------------|-----------|----------|--------------------|------|-------------|------|-------|
| Code       |                                      | Theory (out of 100)                   |           |          |                    | Term | Pract       | Oral | Total |
|            |                                      | Internal<br>Assessment<br>(out of 20) |           |          | End<br>sem<br>Exam | work | and<br>Oral |      |       |
|            |                                      | Test<br>1                             | Test<br>2 | Avg.     |                    | 5    |             | Co   | •     |
| ISC<br>601 | Process<br>Instrumentation<br>System | 20                                    | 20        | 20       | 80                 | -    |             | -    | 100   |

•

| Subject Code          | Subject Name                                                | credits     |
|-----------------------|-------------------------------------------------------------|-------------|
| ISC 601               | Process Instrumentation System                              | 4           |
| Course objective      | 1. To make the students to familiar with differen           | t Process   |
|                       | Dynamics & process control actions.                         |             |
|                       | 2. Students are expected to learn classification & w        | orking of   |
|                       | Controllers & Tuning Methods.                               |             |
|                       | 3. Students are expected to understand various control scl  | nemes.      |
|                       | 4. To familiarize concept of Multivariable Control & Dis    | crete state |
|                       | process control Requirement.                                |             |
| <b>Course Outcome</b> | The students will be able to                                |             |
|                       | 1. Understand & Learn Process Control Terminologies         | s, Process  |
|                       | Dynamics & their mathematical model.                        |             |
|                       | 2. Understand different types of control actions & their se | election.   |
|                       | 3. Learn Features & Classify controllers like electronic, j | pneumatic   |
|                       | and hydraulic & their Tuning Techniques.                    |             |
|                       | 4. Learn various process control schemes & their applicat   | tions and   |
|                       | selection.                                                  |             |
|                       | 5. Understand Multivariable Control systems & their Inte    | raction     |
|                       | 6. Develop relay logic for various processes & symbols.     |             |

# **Details of Syllabus:**

Prerequisite: Measurement of physical parameters, sensors/transducers and basic control system.

|       | Process Instrumentation System                                  |     |         |
|-------|-----------------------------------------------------------------|-----|---------|
| Modul | Content                                                         | Hrs | CO      |
| e     |                                                                 |     | Mapping |
| 1     | Introduction to Process Control                                 | 08  | CO1     |
|       | Process Control Terminology, Development of Typical Process     |     |         |
|       | Control loops like Pressure, Temperature, flow & Level. Process |     |         |
|       | characteristics, control system parameters, Dynamic elements in |     |         |
|       | a control loop, Dead time processes and smith predictor         |     |         |
|       | compensator. Inverse response behaviour of processes and        |     |         |
|       | compensator. Dynamic behaviour of first and second order        |     |         |
|       | systems. Interacting and non-interacting systems. Development   |     |         |

|   | I                                                                |    |            |
|---|------------------------------------------------------------------|----|------------|
|   | of Mathematical Model for first & second order system with       |    |            |
|   | Example.                                                         |    |            |
| 2 | Process Control Actions                                          | 06 | CO2        |
|   | Types-Discontinuous, continuous (P, I, D) and composite control  |    |            |
|   | actions (PI, PD, and PID), Effects of control actions, selection |    |            |
|   | criteria.                                                        |    |            |
| 3 | Process Controllers and Tuning                                   | 08 | CO3        |
|   | Need for controller, General features, specifications,           |    |            |
|   | classification & working of Pneumatic, Hydraulic and Electronic  |    |            |
|   | controllers.                                                     |    |            |
|   | Need for controller Tuning. Tuning Methods-Process reaction      |    |            |
|   | curve method, Ziegler-Nichols method, Cohen coon correction      |    |            |
|   | for quarter amplitude, Frequency response method, Relay based    |    |            |
|   | tuning. Concept of Auto Tuning. Introduction to Model based      |    |            |
|   | Controller.                                                      | C  | •          |
| 4 | Control Schemes                                                  | 12 | CO4        |
|   | Feedback, Feed forward, cascade, Ratio, split range, selective   |    |            |
|   | control, adaptive control, inferential control, and selection    |    |            |
|   | Guidelines.                                                      |    |            |
| 5 | Multivariable Control                                            | 06 | <b>CO5</b> |
|   | Introduction to SISO & MIMO systems, Block diagram analysis      |    |            |
|   | of multivariable systems, Interaction, relative gain analysis,   |    |            |
|   | Decoupler design                                                 |    |            |
| 6 | Discrete-State process control                                   | 08 | CO6        |
|   | Need for Discrete state process control systems, process         |    |            |
|   | specification and event sequence description, Relay Logic        |    |            |
|   | symbols, Development of Relay ladder Logic diagram and case      |    |            |
|   | study examples.                                                  |    |            |

# **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems.

# **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

# **Books Recommended:**

# **Text Books:**

- 1. Curtis D. Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.
- 2. George Stephanopoulos, "Chemical process control", PHI-1999.

## **Reference Books:**

1. Bela G. Liptak, "Instrument Engineer's Hand Book - Process Control", Chilton Company, 3rd

Edition, 1995.

- 2. M.Chidambaram, "Computer Control of Processes", Narosa, 2002.
- 3.Deshpande P.B and Ash R.H, "Elements of Process Control Applications", ISA Press, New York, 1995.
- 4.D. Patranabis, "Principles of Process Control", Second edition, TMH.
- 5.F.G. Shinsky, "Process Control System", TMH.
- 6.N.E. Battikha, "Condensed Handbook of Measurement and Control", 3rd Edition., ISA Publication.
- 7. Donald P. Eckman, "Automatic Process Control", Wiley Eastern Ltd.
- 8.Franklyn W. Kirk, Nicholas R. Rimboi, "Instrumentation", First edition, 1996, D.

#### **Suggested E Books:**

- 1. Instrumentation & Controls- Process control Fundamental by PA Control.Com
- 2. Dr. M.J.Willis, "Conventional process control schemes"
- 3. Tony R Kuphaldt, "Lessons in Industrial Instrumentation"
- 4. W.C.Dunn, "Fundamentals of Industrial Instrumentation"

| Subject       | Subject Name           | Te     | eaching | 5     |       | Cre     | dits Assi | gned  |          |
|---------------|------------------------|--------|---------|-------|-------|---------|-----------|-------|----------|
| code          |                        | Theory | Prac    | Tut.  | Th    | Pract.  | Tut.      | Total |          |
| <b>ISC602</b> | <b>Industrial Data</b> |        |         |       |       |         |           |       |          |
|               | Communication          | 3      | -       | -     | 3     | -       | -         | 3     |          |
|               |                        |        |         |       |       |         |           |       |          |
|               | 1                      | 1      |         |       | l     | (       | V         |       | <b>)</b> |
| Subject       |                        |        |         | Exami | inati | on Sche | eme       |       |          |

| Subject |                 | Examination Scheme        |           |         |             |          |             |     |       |
|---------|-----------------|---------------------------|-----------|---------|-------------|----------|-------------|-----|-------|
|         |                 | Г                         | heory(o   | ut of1  | .00)        |          |             |     |       |
| Code    |                 | Internal<br>Assessment(or |           | out End |             | Ter      | Pract       |     | ٠     |
|         | Subject Name    | Test1                     | Test<br>2 | Avg.    | sem<br>Exam | m<br>Wor | and<br>oral | Ora | Total |
| ISC 602 | Industrial Data | 20                        | 20        | 20      | 80          |          | -           | -   | 100   |
|         | Communication   |                           |           |         |             |          |             |     |       |
|         |                 |                           |           | )       |             |          |             |     |       |

| Subject Code             | Subject Name                                                                                                                                                                                                                                                                                                                                                                      | Credits    |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|
| ISC602                   | Industrial Data Communication                                                                                                                                                                                                                                                                                                                                                     | 3          |  |  |  |  |  |  |
| <b>Course Objectives</b> | 1. To expose students to the basics of communication                                                                                                                                                                                                                                                                                                                              |            |  |  |  |  |  |  |
|                          | 2. To create awareness about the the OSI refrence model                                                                                                                                                                                                                                                                                                                           | l.         |  |  |  |  |  |  |
|                          | 3. To acquaint the students with the different types of n                                                                                                                                                                                                                                                                                                                         |            |  |  |  |  |  |  |
|                          | various levels such as sensor level, device network a                                                                                                                                                                                                                                                                                                                             | nd control |  |  |  |  |  |  |
|                          | network.                                                                                                                                                                                                                                                                                                                                                                          |            |  |  |  |  |  |  |
|                          | 4. To provide sufficient knowledge about the HART.                                                                                                                                                                                                                                                                                                                                |            |  |  |  |  |  |  |
|                          | 5. To impart the fundamentals of foundation field bus.                                                                                                                                                                                                                                                                                                                            |            |  |  |  |  |  |  |
| Course Outcomes          | The students will be able to                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |  |  |  |
|                          | <ol> <li>Explain the importance of modulation in communication</li> <li>Examine the importance of OSI,TCP/IP model,various recomponents.</li> <li>Compare the different types of networks at various level communication.</li> <li>Use HART for communication</li> <li>Establish Foundation fieldbus communication.</li> <li>Investigate the various wireless devices.</li> </ol> | networking |  |  |  |  |  |  |

# **Details of syllabus:**

Prerequisite: Awareness of transmitters, different process loops, Basics of communication system.

| Module   | Content                                                                                                                             | Hours       | CO      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
|          |                                                                                                                                     | liours      | Mappir  |
|          | Introduction to Communication System:                                                                                               |             |         |
|          | Elements of communication system, Noise in communication                                                                            |             |         |
| 1.       | Systems.                                                                                                                            | 08          | CO1     |
|          | Amplitude Modulation: Introduction, Time and frequency domain                                                                       |             |         |
|          | analysis,                                                                                                                           |             |         |
|          | Frequency Modulation, Phase Modulation, Effect of noise in FM.                                                                      |             |         |
|          | Digital Modulation, PAM,PPM,PWM,FSK,QPSK.                                                                                           | 5           | ·       |
|          | Introduction to Networks:                                                                                                           |             |         |
|          | OSI reference model, TCP/IP model, Transmission media, UTP-<br>STP cable, co-axial cable, N/W components: Repeaters, bridge,        |             |         |
|          | hub, switch, router, gateways.                                                                                                      | 05          |         |
| 2.       | Open Control N/W: RS232, RS422, EIA485                                                                                              | 05          | CO2     |
|          | Modbus Structure, Implementation, GPIB.                                                                                             |             |         |
|          | Proprietary Control N/W:Modbus Plus                                                                                                 |             |         |
|          | Networks at different levels:                                                                                                       |             |         |
|          | Sensor level network: AS-i, CAN, Devicenet, Interbus and LON                                                                        |             |         |
| 3        | Device networks: Foundation Fieldbus H1-HART Profibus-PA                                                                            | 08          | CO3     |
|          | Control Network: BACnet, control-net, FF-HSE, Profibus-DP,                                                                          |             |         |
|          | Ethernet, TCP/IP<br>HART:                                                                                                           |             |         |
| 4        |                                                                                                                                     |             |         |
| 4        | Architecture, Physical, Data Link, Application, Communication<br>Technique, Normal and burst mode of communication,                 | 04          | CO4     |
|          | Troubleshooting, Benefits of HART                                                                                                   |             | 04      |
|          |                                                                                                                                     |             |         |
|          | Foundation Fieldbus:                                                                                                                |             |         |
|          | Fieldbus requirement, features, advantages, fieldbus components, types, architecture-physical, data link, application layer, system |             |         |
| ~        | and network management, wiring, segment functionality checking,                                                                     | 06          | COS     |
| 5        | installation in safe and hazardous area and troubleshooting,                                                                        |             |         |
|          | function block application process.                                                                                                 |             |         |
|          | OPC Architecture                                                                                                                    |             |         |
|          | Wireless Technologies:                                                                                                              |             |         |
| 6        | Satellite systems, Wireless LANs (WLANs), WiFi, VPAN, Zigbee,                                                                       | ~ <b>-</b>  |         |
|          | bluetooth GPRS and – their comparison, limitations and                                                                              | 05          | CO6     |
|          | characteristics, Introduction to IOT and IIOT,RFID                                                                                  |             |         |
|          |                                                                                                                                     |             |         |
| Interna  | al Assessment:                                                                                                                      |             |         |
| <b>T</b> |                                                                                                                                     |             | 1       |
|          | Assessment consists of two tests out of which, one should be c                                                                      |             |         |
|          | im 02 Modules) and the other is either a class test or assignment of                                                                | n live prob | nems or |
| project. |                                                                                                                                     |             |         |
|          |                                                                                                                                     |             |         |

# **End Semester Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

## **Text Books:**

- 1. Deon Reynders, Steve Mackay, Edwin Wright, : "Practical Industrial Data Communications", 1<sup>st</sup> edition ELSEVEIR, 2005.
- 2. Lawrence M Thompson, : "Industrial Data Communication", 2<sup>nd</sup> edition, 1997.

- 1. Daniel T Miklovic, "Real Time Control Networks", ISA 1993.
- 2. Bela G Liptak, "Process Software and Digital Networks",3<sup>rd</sup> edition2002.
- 3. Andrew S. Tanenbaum, "Computer Networks", 4<sup>th</sup> edition, PHI/Pearson Education, 2002.
- 4. Behrouz A. Forouzan, "Data Communications and Networking", 2<sup>nd</sup> update edition, Tata McGraw Hill Publishing Company, New Delhi,2000.
- Douglas E.Corner, "Computer Networks and Internets"2<sup>nd</sup> edition, Pearson Education Asia,5<sup>th</sup> Indian reprint, 2001.

| Subject<br>code | Subject Name | Teaching s         | cheme | Credit assigned |        |        |      |       |
|-----------------|--------------|--------------------|-------|-----------------|--------|--------|------|-------|
| ISC603          | Electrical   | Theory Pract. Tut. |       |                 | Theory | Pract. | Tut. | Total |
|                 | Machines and | 4                  | -     | -               | 4      | -      | -    | 4     |
|                 | Drives       |                    |       |                 |        |        |      |       |

|               |                     |          |                         |     |      |      | 4      |      |      |
|---------------|---------------------|----------|-------------------------|-----|------|------|--------|------|------|
| Sub           | Subject Name        | Examin   | Examination scheme      |     |      |      |        |      |      |
| Code          |                     | Theory   | (out of 1               | 00) |      | Term | Pract. | Oral | Tota |
|               |                     | Internal | Internal Assessment End |     |      |      | and    |      | 1    |
|               |                     | Test1    | Test1 Test2 Avg. Sem    |     |      |      | Oral   |      |      |
|               |                     |          |                         |     | Exam |      |        |      |      |
| <b>ISC603</b> | Electrical          | 20       | 20                      | 20  | 80   | -    |        | -    | 100  |
|               | <b>Machines and</b> |          |                         |     |      |      |        |      |      |
|               | Drives              |          |                         |     |      |      |        |      |      |

| Subject Code          | Subject Name                                                          | Credits  |
|-----------------------|-----------------------------------------------------------------------|----------|
| ISC603                | Electrical Machines and Drives                                        | 4        |
| Course                | 1. To learn the basic concept and characteristics of Electrical motor | ors.     |
| Objective             | 2. To equip the students with the knowledge of semiconductor de       | vices&   |
| Ū                     | their applications.                                                   |          |
|                       |                                                                       |          |
| <b>Course Outcome</b> | Students will be able to:                                             |          |
|                       | 1. Explain working of DC motors and study their characteristics.      |          |
|                       | 2. Describe the working principle of 3-phase I.M.                     |          |
|                       | 3. Discuss the constructional features of single-phase I.M.           |          |
|                       | 4. Compare basic characteristics and ratings of power electronic d    | levices. |
|                       | 5. Use controlled rectifiers, Inverters & choppers with different lo  | oads.    |
|                       | 6. Illustrate working of AC & DC drives.                              |          |

**Details of Syllabus:** 

**Prerequisite:** Knowledge of Faraday's laws, Lenz's law. Semiconductor devices such as diodes and transistors and their characteristics.

| Module | Contents                                                                                                                                                                                                                                                  | Hrs | CO<br>mapping |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | <b>DC Machines:</b> Types of DC motors, EMF equation generating & motoring action. Characteristics of DC motors. Speed control methods of DC motors. Applications of DC motors                                                                            | 08  | CO1           |
| 2      | <b>3-Phase Induction Motors:</b> Construction& working principle of 3-phase IM. Slip, rotor frequency torque slip characteristic, power stages in IM                                                                                                      | 08  | CO2           |
| 3      | <b>Fractional HP Motors:</b> Construction & working principle<br>of 1-phase I.M.split phase IM. Shaded pole IM Basic<br>concepts of Stepper Motor, Servomotor                                                                                             | 06  | CO3           |
| 4      | Semiconductor Devices:Introduction, characteristic, ratings<br>& applications of power diode, power BJT, power MOSFET<br>& IBGT<br>Construction & characteristic, ratings of SCR, TRIAC<br>Triggering methods of Thyristors using DIAC,UJT & PUT<br>only. | 08  | CO4           |
| 5      | Applications of power semiconductor devices:<br>Controlled Rectifier: Principle of operation of 1-phase<br>controlled converters, 1-phase half bridge & full bridge                                                                                       | 12  | CO5           |

|   | converter performance with R-L load. Basic operation of 3-<br>phase converter<br>AC power control with TRIAC-DIAC<br>Inverter: Principle of operation of basic inverter, bridge<br>inverter, PWM inverter<br>DC-to-DC Converter: Basic operation of chopper, study of<br>different types of chopper circuits like step up & step down<br>chopper | \$ |     |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 6 | Drives:<br>DC motor drives: 1-phase & 3-phase converter drives for<br>continuous & discontinuous operation, chopper fed drive.<br>AC motor drives and control: Control strategies of IM like<br>stator voltage control & frequency control. Variable<br>frequency VSI drives. Variable frequency CSI drives.                                     | 06 | CO6 |  |

# Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 6) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 7) Total 4 questions need to be solved.
- 8) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 9) Remaining questions will be mixed in nature.
- 10) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **Text Books:**

- 1. Sawhney A.K., Electrical & Electronics Measurement and Instrumentation, Dhanapat Rai &Co. Pvt Ltd
- 2. Nagrath I.J., Kothari D.P., Electrical Machines, second edition, Tata McGraw Hill, New Delhi.
- 3. B.L. Theraja, Fundamentals of Electrical & Electronics, S.Chand, Technical.
- 4. V.K. Mehta, Rohit Mehta, Principles of Electrical Engg. & Electronics, S.Chand
- 5. P.S. Bhimbra, Power Electronics, Khanna publishers, 2004
- 6. M. H. Rashid, Power Electronics, 2nd Edition, PHI, 2005

- 1. Say M.G., The performance & Design of Alternating Current Machines, 3<sup>rd</sup> edition, Oxford University
- 2. P.C. Sen, Power Electronics, Tata McGraw Hill, 2005
- 3. Mohan Undeland Robbins, Power Electronics- Converters application & Design, Wiley Eastern, 1996
- 4. Dubey, Dorald, Thyristorised Power Controller, Wiley Eastern Ltd.1993
- 5. S.K. Datta, Power Electronics & control, PHI 1986
- 6. S.K. Bhattacharya, Industrial Electronics & Control, TATA McGraw Hill, 2007
- 7. B.K.Bose, Modern power Electronics & AC Drives Pearson Education Inc.2002

| Subject<br>code | Subject Name   | Teaching scheme |        |      | Credit assigned |        |      |       |  |
|-----------------|----------------|-----------------|--------|------|-----------------|--------|------|-------|--|
| <b>ISC604</b>   | Digital Signal | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |
|                 | Processing     | 4               | 4      |      |                 | -      | -    | 4     |  |

| Subject<br>code | Subject Name          |          | Teachin    | g schei | me      | Credit a | ssigned |      |         |   |
|-----------------|-----------------------|----------|------------|---------|---------|----------|---------|------|---------|---|
| ISC604          | Digital Signal        |          | Theory     | Pract   | . Tut.  | Theory   | Pract.  | Tut. | Total   |   |
|                 | Processing            |          | 4          | -       | -       | 4        | -       | -    | 4       |   |
|                 |                       |          |            |         |         |          |         |      |         |   |
| Sub             | Subject Name          | Examin   | ation sche | eme     |         |          |         |      |         |   |
| Code            | -                     | Theory   | (out of 10 | 0)      |         | Term     | Pract.  | Oral | Total   |   |
|                 |                       | Internal | Assessme   | ent     | End Sem | work     | and     |      |         |   |
|                 |                       | Test1    | Test2      | Avg.    | Exam    |          | Oral    |      |         |   |
| <b>ISC604</b>   | <b>Digital Signal</b> | 20       | 20         | 20      | 80      | -        | -       | -    | 100     |   |
|                 | Processing            |          |            |         |         |          |         |      |         |   |
|                 |                       |          |            |         |         | 6.       |         |      |         | - |
| Subjec          | t Code                |          | S          | bubject | : Name  |          |         |      | Credits |   |

| Subject Code | Subject Name / Credits                                                          |
|--------------|---------------------------------------------------------------------------------|
| ISC604       | Digital Signal Processing 4                                                     |
| Course       | 1. To introduce the basic concept of discrete time signal processing and        |
| Objectives   | Acquired knowledge about DSP and its fundamentals.                              |
|              | 2. To familiarize with Fourier transform algorithms and convolution of DT       |
|              | sequences.                                                                      |
|              | 3. Ability to design IIR digital filter and realization of its structures using |
|              | different forms.                                                                |
|              | 4. To design FIR filter using different methods.                                |
|              | 5. To understand the basic concept of DSP processor and Adaptive filtering      |
|              | for practical applications.                                                     |
| Course       | Students will be able to -                                                      |
| Outcomes     | 1. Describe the basic concept of discrete time signal processing such as        |
|              | sampling, aliasing, concept of DSP.                                             |
|              | 2. Demonstrate an ability to apply Discrete Fourier Transform, Fast Fourier     |
|              | transform and convolution techniques to signals.                                |
|              | 3. Apply the concepts of all-pass and minimum-phase systems to analyses         |
|              | the LTI system, Also realization of system by direct form I, II, Cascade,       |
|              | Parallel and Structure form.                                                    |
|              | 4. Design FIR filter by different techniques.                                   |
|              | 5. Describe how IIR filters are designed and Implemented by different           |
|              | methods.                                                                        |
|              | 6. Explain DSP processors and adaptive filters such as LMS, RLS for             |
|              | various applications.                                                           |
|              |                                                                                 |
|              |                                                                                 |
|              |                                                                                 |
| •            |                                                                                 |
|              |                                                                                 |
|              |                                                                                 |
|              |                                                                                 |

#### **Details of Syllabus:**

**Prerequisite:** Knowledge of Fundamentals of Engineering Mathematics, Knowledge of Signals and Systems, Basic programming skill

| Module                 | Contents                                                             | Hrs | СО      |
|------------------------|----------------------------------------------------------------------|-----|---------|
|                        |                                                                      |     | mapping |
| 1                      | Introduction:- Review of discrete time signals and systems,          | 04  | CO1     |
|                        | Basics of Z transform, Block diagram of DSP, Advantages and          |     |         |
|                        | applications, Sampling theorem, Reconstruction of signals,           |     |         |
|                        | Aliasing.                                                            |     |         |
| 2                      | Discrete Fourier Analysis: - DFT and its property, Decimation        | 12  | CO2     |
|                        | in time FFT algorithms, Decimation in frequency FFT                  |     |         |
|                        | algorithms, convolution by DFT, Overlap add and Overlap save         |     |         |
|                        | method, Goertzel algorithm, The chirp Z transform algorithm          |     | •       |
| 3                      | Analysis of Digital Filter: - Classification of filter on their pole | 06  | CO3     |
|                        | zero diagram.                                                        |     |         |
|                        | Frequency response of IIR filters frequency response analysis        |     |         |
|                        | of all types of linear phase system. Difference between IIR and      |     |         |
|                        | FIR Filters.                                                         |     |         |
|                        | Realization of systems: -Realization of IIR systems by Direct        |     |         |
|                        | Form-I, Direct form-II, Cascade and Parallel. Realization of         |     |         |
|                        | FIR systems by Direct form, cascade and linear phase system.         |     |         |
|                        | Lattice structures.                                                  |     |         |
| 4                      | Design of digital FIR filters:- Classification of filters, Ideal     | 08  | CO4     |
|                        | filter characteristics, Symmetric and asymmetric FIR filters,        |     |         |
|                        | Minimum Phase and All pass filters, FIR filter design by             |     |         |
|                        | window technique and frequency sampling method, Linear               |     |         |
|                        | phase and Zero phase filters, Hilbert transform.                     |     |         |
| 5                      | Design of digital IIR filters:- Comparison with FIR filters,         | 10  | CO5     |
|                        | Review of Analog filters, Butterworth, Chebyshev                     |     |         |
|                        | approximations, Frequency transformation, Design of digital          |     |         |
|                        | IIR filters using Bilinear transformation method, Impulse            |     |         |
|                        | Invariant transformation method, Pole zero placement method,         |     |         |
|                        | Matched Z transform (MZT) method.                                    |     |         |
| 6                      | <b>Recent trends in DSP system design:</b> - Introduction,           | 08  | CO6     |
| v                      | Architecture of TMS 320C54X, CPU, Arithmetic logic unit,             |     |         |
|                        | Multiplier/Adder unit, Engineering applications of DSP               |     |         |
|                        | processors. Introduction to adaptive filters: -Need of Adaptive      |     |         |
|                        | filter and its application areas, Least mean square (LMS) filter,    |     |         |
| $\mathbf{A}\mathbf{V}$ | Recursive least square(RLS) filter.                                  |     |         |
| Intornal               | Assessment:                                                          |     |         |

# Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

~

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

## **Text Books:**

- 1. Oppenheim, Schafer, "Discrete-Time Signal Processing", PHI,3<sup>rd</sup> edition, 2009.
- 2. John G. Proakis, "Digital Signal Processing", Pearson, 4<sup>th</sup> edition, 2007.
- 3. Sanjit K. Mitra, "Digital Signal Processing", McGraw Hill, 4<sup>nd</sup> edition, 2013.
- 4. Emmanuel Ifeachor, "Digital Signal Processing: A Practical Approach", PHI,2<sup>nd</sup> edition, 2001.
- 5. Vinay Ingale, "Digital signal processing using MATLAB", Cengage, 3<sup>rd</sup> edition, 2012.
- 6. Richard Lyons, "Understanding Digital Signal Processing" PHI, 1<sup>st</sup> edition, 2001.

- 1. Thomas J. Cavicchi, "Digital Signal Processing" Wiley, 1<sup>st</sup> edition, 2009.
- 2. B. Venkataramani, M Bhaskar, "Digital Signal Processors", McGraw Hill, 2<sup>nd</sup>edition, 2010.
- 3. Chi-Tsong Chen, "Digital Signal Processing: Spectral Computation", Oxford, 1<sup>st</sup>edition, 2007.
- 4. Dr.Shaila D. Apte, "Digital Signal Processing" Wiley, 2<sup>nd</sup> edition, 2009.
- Robert A. Schilling," Introduction to Digital Signal Processing using MATLAB", Cengage, 2<sup>nd</sup> edition, 2012.
- 6. Ramesh Babu, "Digital Signal Processing" Scitech, 4<sup>th</sup>edition, 2011.
- Monson H. Hayes, "Schaums Outline of Digital Signal Processing", McGraw Hill, 2<sup>nd</sup>edition,2010.

| Subject<br>code | Subject Name     | Teaching | scheme |      | Credit as | signed |      |       |
|-----------------|------------------|----------|--------|------|-----------|--------|------|-------|
| <b>ISC605</b>   | Advanced Control | Theory   | Pract. | Tut. | Theory    | Pract. | Tut. | Total |
|                 | System           | 3        | -      | -    | 3         | -      | -    | 3     |

| Subject<br>code | Subject Name          |         | Teaching schem |       | ne Credit assigned |        |        |      |       |
|-----------------|-----------------------|---------|----------------|-------|--------------------|--------|--------|------|-------|
| ISC605          | Advanced Contr        | ol      | Theory         | Pract | t. Tut.            | Theory | Pract. | Tut. | Total |
|                 | System                |         | 3              | -     | -                  | 3      | -      | -    | 3     |
|                 |                       |         |                |       |                    |        |        |      |       |
| Sub             | Subject Name          | Examin  | nation sch     | leme  |                    |        |        |      |       |
| Code            | -                     | Theory  | (out of 1      | 00)   |                    | Term   | Pract. | Oral | Total |
|                 |                       | Interna | l Assessn      | nent  | End Sem            | work   | and    |      |       |
|                 |                       | Test1   | Test2          | Avg.  | Exam               |        | Oral   |      |       |
| <b>ISC605</b>   | Advanced              | 20      | 20             | 20    | 80                 | -      | -      | -    | 100   |
|                 | <b>Control System</b> |         |                |       |                    |        |        |      |       |

| Subject Code            | Subject News                                                             |  |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Subject Code            | Subject Name Credits                                                     |  |  |  |  |  |  |  |
| ISC605                  | Advanced Control System 3                                                |  |  |  |  |  |  |  |
| Course                  | To make students understand -                                            |  |  |  |  |  |  |  |
| Objectives              | 1. the concept of nonlinear control system, and different linearization  |  |  |  |  |  |  |  |
|                         | methods to linearize the nonlinear system.                               |  |  |  |  |  |  |  |
|                         | 2. the concept of sliding mode control and its features.                 |  |  |  |  |  |  |  |
|                         | 3. the stability analysis of nonlinear control system through describing |  |  |  |  |  |  |  |
|                         | function and Lyapunov's method.                                          |  |  |  |  |  |  |  |
|                         | the concept of Internal Model Control and its application in control     |  |  |  |  |  |  |  |
|                         | engineering                                                              |  |  |  |  |  |  |  |
|                         | the importance of adaptive control system with their different types in  |  |  |  |  |  |  |  |
|                         | control engineering as well as in process industries                     |  |  |  |  |  |  |  |
|                         | 6. the basic concept of Optimal Control.                                 |  |  |  |  |  |  |  |
| Course                  | The Students will be able to -                                           |  |  |  |  |  |  |  |
| Outcomes                | 1. Differentiate linear and nonlinear system, study characteristics of   |  |  |  |  |  |  |  |
|                         | common physical nonlinearities.                                          |  |  |  |  |  |  |  |
|                         | 2. Perform linearization of the nonlinear systems by using linearization |  |  |  |  |  |  |  |
|                         | techniques.                                                              |  |  |  |  |  |  |  |
|                         | 3. Construct phase-plane trajectories, study behavior of limit cycle and |  |  |  |  |  |  |  |
|                         | concept of sliding mode control.                                         |  |  |  |  |  |  |  |
|                         | 4. Investigate the stability of nonlinear system by describing function  |  |  |  |  |  |  |  |
|                         | method.                                                                  |  |  |  |  |  |  |  |
|                         | 5. Investigate the stability of nonlinear system by Lyapunov's method    |  |  |  |  |  |  |  |
|                         | 6. Design and develop the IMC structure for particular system with       |  |  |  |  |  |  |  |
| $\mathbf{A}\mathbf{V}2$ | Uncertainty and Disturbances.                                            |  |  |  |  |  |  |  |

# **Details of Syllabus:**

Prerequisite: Knowledge of Linear algebra, Fourier Series, and Nyquist stability criterion.

| Module | Hrs                                                                                                                                                                                        | CO<br>mapping |     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
| 1      | Nonlinear Control Systems<br>Definition of nonlinear systems, Difference between linear<br>and nonlinear systems, characteristics of nonlinear systems,<br>Common physical nonlinearities. | 02            | CO1 |
| 2      | Linearization Methods<br>Jacobian Linearization, Concept of relative degree,<br>feedback linearization for systems with no internal<br>dynamics.                                           | 02            | CO2 |

| 3 | <b>Phase plane Analysis</b><br>Basic concepts, phase trajectories, phase portrait,<br>Constructing phase portraits by analytical method,<br>Graphical Method -Delta Method Singular points and their               | 08 | CO3 |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
|   | classification, limit cycles and behaviour of limit cycles.<br>Introduction to Sliding Mode Control.                                                                                                               |    |     |  |
| 4 | <b>Describing Function Analysis</b><br>Describing Function Fundamentals, Describing Functions of<br>saturation, dead zone, relay and their combinations,<br>Stability analysis of nonlinear systems via describing | 08 | CO4 |  |
| 5 | function method.<br><b>Lyapunov Stability Analysis</b><br>Stability of equilibria, Asymptotic stability, Lyapunov<br>stability theorems, Stability analysis of linear systems,                                     | 08 | C05 |  |
|   | Construction of Lyapunov functions using Krasovskii method and variable gradient method.                                                                                                                           |    |     |  |
| 6 | Internal Model Control<br>Introduction to Model-Based Control, Open loop controller<br>Design, Model Uncertainty and Disturbances, Development<br>of IMC structure, IMC-Based PID Controller Design                | 08 | CO6 |  |

# **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# Text Books:

- 1. I. J. Nagrath and M. Gopal, Control System Engineering, 3rd Edition, New Age International (P) Ltd., Publishers - 2000.
- 2. K. Ogata, Modern Control Engineering, Prentice Hall of India, 4<sup>th</sup> edition, 2002.
- **3.** Dr. K.P. Mohandas, "Modern Control Engineering", revised edition, Sanguine Publishers, Bangalore, 2006.

- 1. Gene F. Franklin, J David Powell, Abbas Emami-Naeini, "Feedback Control of Dynamic Systems", 5<sup>th</sup> edition Pearson Educations.
- 2. Shankar Sastry, Marc Bodson, "Adaptive Control", Prentice Hall of India (P) Ltd., 1993.
- 3. John Doyle, Bruce Francis, Allen Tannenbaum, "Feedback Control Theory".
- 4. Pierre R. Belanger, "Control Engineering", Saunders college Publishing.

- 5. Norman Nise, "Control System Engineering", 4<sup>th</sup> edition Wiley International Edition.
- 6. Christopher Edwards, Sarah K. Spurgeon, "Sliding Mode control: Theory and Application", 1998.
- Karl J. Astrom, B. Wittenmark, "Adaptive Control", 2<sup>nd</sup> Edition, Pearson Education Asia, First Indian Reprint, 2001
- 8. Stanislaw H. Zak, "Systems and Control", Indian Edition, Oxford University Press, 2003.
- 9. Donald E. Kirk, "Optimal Control Theory- An Introduction",
- 10. M. Gopal, "Modern Control System Theory", Wiley Eastern Ltd., New Delhi.

| Sub<br>code      | Subject Name        | Teachi | ng Scl | neme |           | Credits  | Assigned |       |  |
|------------------|---------------------|--------|--------|------|-----------|----------|----------|-------|--|
|                  |                     | Theory | Pra    | Tut. | Theory    | Pract.   | Tut.     | Total |  |
| ISDLO6021        | Material<br>Science | 3      | -      | -    | 3         | -        |          | 3     |  |
|                  |                     | -      |        |      |           |          |          |       |  |
|                  |                     |        |        | Ex   | aminatior | 1 Scheme |          |       |  |
| Theory Marks 100 |                     |        |        |      |           |          |          |       |  |

|                  |                     | Examination Sch |          |      |            |      | heme        |      |       |  |
|------------------|---------------------|-----------------|----------|------|------------|------|-------------|------|-------|--|
|                  |                     | Theory Marks 1  |          |      | 00         |      |             |      |       |  |
| Sub Subject Name |                     |                 | Internal | 20)  | End<br>sem | Term | Pract       |      | •     |  |
| code             | Subject Name        | Test1           | Test2    | Avg. | Exam       | Work | and<br>oral | Oral | Total |  |
| ISDLO6021        | Material<br>Science | 20              | 20       | 20   | 80         |      | 5           | -    | 100   |  |

| Subject Code      | Subject Name                                                                                                        | Credits   |  |  |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| ISDLO 6021        | Material Science                                                                                                    | 3         |  |  |  |  |  |  |
| Course Objectives | 1. To understand the fundamentals of Material Science                                                               | ence and  |  |  |  |  |  |  |
|                   | Metallurgy.<br>2. To create awareness about the different mechanical t                                              | esting in |  |  |  |  |  |  |
|                   | <ul><li>industry.</li><li>3. To determine the mechanical properties of metal, non</li></ul>                         |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   | and alloys.                                                                                                         |           |  |  |  |  |  |  |
| Course Outcomes   | The students will be able to                                                                                        |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   | <ol> <li>Classify and brief the properties of materials.</li> <li>Describe about the mechanical testing.</li> </ol> |           |  |  |  |  |  |  |
|                   | 3. Explain structure of materials.                                                                                  |           |  |  |  |  |  |  |
|                   | 4. Acquire knowledge about heat treatment of steel                                                                  |           |  |  |  |  |  |  |
|                   | 5. Examine micro-macro metals.                                                                                      |           |  |  |  |  |  |  |
|                   | 6. Analyze different non ferrous alloys                                                                             |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |
|                   |                                                                                                                     |           |  |  |  |  |  |  |

# **Details of Syllabus :**

Prerequisite: Knowledge of metals ,non-metals and basic physics.

| Module | Content                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs. | CO      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Mapping |
| 1      | Classification and properties of material                                                                                                                                                                                                                                                                                                                                                                        | 06   | CO1     |
|        | Metal, non-metal such as ceramic, plastic and polymers, composite material                                                                                                                                                                                                                                                                                                                                       |      |         |
|        | Structure of material: Structure, general relationship of structure<br>level to various engineering properties, atomic structure, bonding<br>in solid, atomic arrangement in solid, crystal structure of metal,<br>space lattice, unit cell, indexing of lattice plane and direction,                                                                                                                            | 5    |         |
|        | plastic deformation, mechanism, deformation of single crystal<br>and polycrystalline metals, imperfection in crystal, dislocation<br>theory of slippage, work hardening, strengthening mechanism in                                                                                                                                                                                                              |      |         |
| 2      | Mechanical Testing                                                                                                                                                                                                                                                                                                                                                                                               | 06   | CO2     |
|        | Tension test, engineering and true stress-strain curves, evaluation<br>of properties, ductility, brittleness and toughness. Types of<br>engineering stress-strain curve, compression test. Hardness<br>testings- Brinell hardness Test, Poldi hardness Test, Rockwell                                                                                                                                            |      |         |
|        | hardness Test, Vickers hardness Test. Durometers, micro hardness.                                                                                                                                                                                                                                                                                                                                                |      |         |
|        | Relation among the various hardness test and hardness to tensile                                                                                                                                                                                                                                                                                                                                                 |      |         |
| 3      | Equilibrium diagrams:                                                                                                                                                                                                                                                                                                                                                                                            | 06   | CO3     |
|        | Related terms and their definitions, construction, common types<br>of equilibrium diagrams, rules of solid solubility, Gibb's phase<br>rules and non-equilibrium cooling. Plane carbon steel, iron-<br>carbon phase diagram, classification of iron carbon alloys,<br>classification, properties & application of steel. Alloy steel:<br>effects of alloying element, function and uses of alloying<br>elements. |      |         |
| 4      | Heat transfer of steel:                                                                                                                                                                                                                                                                                                                                                                                          | 06   | CO4     |
| 8      | Principal of heat treatment, phase transformation in steel during<br>heating, transformation of Austenite during cooling, time-<br>temperature transformation diagram, critical cooling rate,<br>continuous transformation diagram,                                                                                                                                                                              |      |         |
|        | Heat treatment Process: annealing, normalizing, hardening, tempering, and case hardening,                                                                                                                                                                                                                                                                                                                        |      |         |
|        | Hardenability of steel, significance of hardenability, the jominy-<br>end quench test, other hardening heat treatment such as<br>hardening, tempering, annealing.                                                                                                                                                                                                                                                |      |         |

| 5 | Macro and micro examination of metals                                                                                                                                                                                                                                                                                                                                                                                                  | 06 | CO5        |          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------|----------|
|   | Macro examination: Specimen preparation, Sulphar painting,<br>flow lines, welded section, Micro examination: Grinding,<br>polishing, etching, optical metallurgical microscopy.<br>Cast Iron: Classification, grey and white cast iron, modular and<br>ductile iron, malleable cast iron, alloyed cast iron, effects of<br>various parameter on structure and properties of cast iron,<br>Application and heat treatment of cast iron. |    | .0         | <b>C</b> |
| 6 | <b>Engineering non-ferrous alloys</b><br>Brass, Bronze, Tin, Aluminum, Silicon, Beryllium bronze,<br>Copper nickel alloy, aluminum alloys, titanium and its alloy,<br>solder and bearing material, Common applications and some<br>specification of various non-ferrous alloys in field such as 1. Die<br>casting industry, 2. Automobile 3. Aircraft industry                                                                         | 06 | <b>CO6</b> |          |

## **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

# **Text Books :**

- 1. Davis H.E. Trcxell G.E. &Wickocil C.T., "Testing of Engg. Materials", McGrawHill Book Co. Inc.
- 2. Smith W. F.,:"Principles of material science", Addison Welsey Publishing Co. Inc
- 3. V. D. Kodgire,:" Material Science and Metallurgy for engineers", Everest publishing House, Pune
- **4.** Van Valck L.H. ,:"Principle of material science and engineering", Addison Wesley Publication Co. Inc.
- 5. B. K. Agrawal ,:" Introduction to engineering materials", Tata Mcgraw Hill Co. Ltd

- 1. ASM Handbook : Surface Engineering Volume 5.
- 2. TME Handbook : Material, Finishing and coating Volume 3.

| Subject   |                                              | Teaching Sc | ing Scheme (Hrs) Credit |       |            | redit Ass | signed |           |   |
|-----------|----------------------------------------------|-------------|-------------------------|-------|------------|-----------|--------|-----------|---|
| code      | Subject Name                                 | Theory      | Pract                   | Tut   | Theory     | Pract     | Tut    | Tota<br>l |   |
| ISDL06022 | Computer<br>Organization and<br>Architecture | 3           | -                       | -     | 3          | 5         |        | 3         | 2 |
|           |                                              |             | ·                       |       |            | )         |        |           |   |
|           | Subject Name                                 |             | Ex                      | amina | tion Schen | ne        | C      |           |   |

|                 | Subject Name                                 | Examination Scheme                                                                |
|-----------------|----------------------------------------------|-----------------------------------------------------------------------------------|
| Subject<br>code |                                              | Theory (out of 100)Internal Assessment<br>(out of 20)End<br>semPract.<br>Term<br> |
| ISDL06022       | Computer<br>Organization and<br>Architecture | 20 20 20 80 100                                                                   |
|                 |                                              |                                                                                   |

|    | Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Credits                                |
|----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| IS | SDL06022         | <b>Computer Organization and Architecture</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                      |
|    | ourse Objectives | <ol> <li>To conceptualize the basics of organizational and architectura<br/>of a digital computer.</li> <li>To analyse performance issues in processor and memory desi<br/>digital computer.</li> <li>To understand various data transfer techniques in digital com</li> <li>To analyse processor performance improvement using in<br/>level parallelism.</li> <li>The students will be able to:</li> <li>To describe basic structure and operation of a digital compute</li> <li>To design fixed-point and floating-point addition, subtraction<br/>multiplication &amp; division and other arithmetic unit algorithms</li> <li>To describe the different ways of communicating with I/O de<br/>and standard I/O interfaces.</li> <li>To analyze the hierarchical memory system including cache<br/>memories and virtual memory.</li> <li>To describe pipelining and its Hazards</li> <li>To Explain the Pentium processor Hardware design</li> </ol> | gn of a<br>puter.<br>astruction<br>er. |

# **Details of Syllabus :**

| Module | Topics                                                                                                                                                                                                                                                           | Hrs. | CO<br>Mapping |   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---|
| 1      | <b>Basic Structure of Computers</b> : Functional UNIT computer,<br>Difference between CO & CA. System Bus, Data Types,<br>Instruction Cycle, Instruction cycle with interrupt                                                                                    | 04   | CO1           | 2 |
| 2      | <b>Computer Arithmetic Introduction:</b> Fixed Point Representation, Floating - Point Representation (IEEE-754) Addition and subtraction, Multiplication Algorithms (Booth Multiplication Algorithm), Division Algorithms, Floating Point Arithmetic operations. | 08   | CO2           |   |
| 3      | Micro Programmed Control: Control Memory, micro code<br>Sequencing, Micro program Examples, Functional description<br>of Control Unit, Hard Wired Control unit, Micro programmed<br>Control unit.                                                                | 06   | CO3           |   |
| 4      | <b>The Memory System:</b> Basic Concepts of Semiconductor<br>RAM Memories, Read-Only Memories, Memory hierarchy,<br>Cache Memories organization, Virtual Memories, Introduction<br>to RAID basic structure.                                                      | 09   | CO4           |   |
|        | Input-Output Organization: Peripheral Devices, Input-Output<br>Interface, Direct Memory Access, Input-Output Processor<br>(IOP), Serial Communication; Introduction to Interconnect<br>(PCI) Bus.                                                                |      |               |   |
| 5      | <b>Pipeline And Vector Processing:</b> Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline and Pipeline Hazards.                                                                                                        | 05   | CO5           |   |
| 6      | <b>Case Study :Pentium architecture</b><br>Overview, Bus operations, Pipelining, Branch Prediction,<br>Instruction and Data Cache, Floating Point Unit                                                                                                           | 04   | CO6           |   |

# **Internal Assessment:**

0

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# End Semester Examination:

- 1. Question paper will comprise of 1 compulsory question of 10 marks and 5 questions, each carrying 20 marks, out of which 3 questions need to be solved.
- 2. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

## **Text Books :**

- 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.
- 2. John P. Hayes, "Computer Architecture and Organization", Third Edition.
- 3. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.

- 1. B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- 2. Dr. M. Usha and T. S. Srikanth, "Computer System Architecture and Organization", First Edition, Wiley-India.
- 3. Ramesh Gaonkar, "Microprocessor Architecture, Programming and Applications with the 8085", Fifth Edition,Penram.
- 4. The Intel Family Of Microprocessors: Hardware and Software Principles and Applications Author: James L. Antonakos

| Subject<br>Code | Subject<br>Name          | Teachi | ng Schem   | e (Hrs) |          | Credit A | Assigned           |       |
|-----------------|--------------------------|--------|------------|---------|----------|----------|--------------------|-------|
| ISDLO6023       | Bio-                     | Theor  | Pract.     | Tut.    | Theory   | Pract.   | Tut.               | Total |
|                 | Sensors                  | У      |            |         |          |          |                    |       |
|                 | and Signal<br>Processing | 3      | -          | -       | 3        | -        |                    | 3     |
|                 |                          |        |            |         |          |          | $\mathbf{\langle}$ |       |
| Sub Code        | Subject                  |        |            | Exa     | mination | Scheme   |                    |       |
|                 | Name                     | Tł     | neory (out | of 100) | Ter      | m Prac   | t. Oral            | Total |

| Sub Code  | Subject    |        |            |         | Examina | tion Sche | eme           |      |       |
|-----------|------------|--------|------------|---------|---------|-----------|---------------|------|-------|
|           | Name       | ]      | Гheory (о  | ut of 1 | 00)     | Term      | Pract.        | Oral | Total |
|           |            | Interr | nal Assess | sment   | End     | work      | and           |      |       |
|           |            | Test   | Test2      | Avg.    | sem     |           | Oral          |      |       |
|           |            | 1      |            | 0       | Exam    |           |               |      |       |
| ISDLO6023 | Bio-       |        |            |         |         | .5        |               |      |       |
|           | Sensors    | 20     | 20         | 20      | 80      |           |               |      | 100   |
|           | and Signal | 20     | 20         | 20      | 80      |           | -             |      | 100   |
|           | Processing |        |            |         |         |           |               |      |       |
|           |            |        |            |         |         |           | $\overline{}$ |      |       |
|           |            |        |            |         |         |           |               |      |       |

| <ul> <li>uses in biomedical applications.</li> <li>2. To provide understanding of principle and operation of different types of bio-sensors like potentiometric, optical and amperiometric sensors.</li> <li>3. To introduce the students to basic signal processing methods used in bio-signal measurement and analysis.</li> <li>Course Outcomes</li> <li>Students would be able</li> <li>1. To describe the basic concept behind bioelectric phenomena.</li> <li>2. To classify the different types of bio-sensors and describe their characteristics.</li> <li>3. To distinguish between the different biosensors used for physical and chemical measurands.</li> <li>4. To explain the various types of transducers found in biosensors and their significance.</li> <li>5. To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ul> | Subject Code      | Subject Name                                                                    | Credits   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|-----------|
| <ul> <li>uses in biomedical applications.</li> <li>2. To provide understanding of principle and operation of different types of bio-sensors like potentiometric, optical and amperiometric sensors.</li> <li>3. To introduce the students to basic signal processing methods used in bio-signal measurement and analysis.</li> <li>Course Outcomes</li> <li>Students would be able</li> <li>1. To describe the basic concept behind bioelectric phenomena.</li> <li>2. To classify the different types of bio-sensors and describe their characteristics.</li> <li>3. To distinguish between the different biosensors used for physical and chemical measurands.</li> <li>4. To explain the various types of transducers found in biosensors and their significance.</li> <li>5. To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ul> | ISDLO6023         | <b>Bio-Sensors and Signal Processing</b>                                        | 3         |
| <ul> <li>types of bio-sensors like potentiometric, optical and amperiometric sensors.</li> <li>To introduce the students to basic signal processing methods used in bio-signal measurement and analysis.</li> <li>Students would be able         <ol> <li>To describe the basic concept behind bioelectric phenomena.</li> <li>To classify the different types of bio-sensors and describe their characteristics.</li> <li>To distinguish between the different biosensors used for physical and chemical measurands.</li> <li>To explain the various types of transducers found in biosensors and their significance.</li> <li>To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ol> </li> </ul>                                                                                                                                      | Course objectives | uses in biomedical applications.                                                |           |
| Course Outcomes       Students would be able         1. To describe the basic concept behind bioelectric phenomena.         2. To classify the different types of bio-sensors and describe their characteristics.         3. To distinguish between the different biosensors used for physical and chemical measurands.         4. To explain the various types of transducers found in biosensors and their significance.         5. To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.                                                                                                                                                                                                                                                                                                                                                       |                   | types of bio-sensors like potentiometric, optical and                           | runnerent |
| <ol> <li>To describe the basic concept behind bioelectric phenomena.</li> <li>To classify the different types of bio-sensors and describe their characteristics.</li> <li>To distinguish between the different biosensors used for physical and chemical measurands.</li> <li>To explain the various types of transducers found in biosensors and their significance.</li> <li>To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                 | ethods    |
| <ol> <li>To classify the different types of bio-sensors and describe their characteristics.</li> <li>To distinguish between the different biosensors used for physical and chemical measurands.</li> <li>To explain the various types of transducers found in biosensors and their significance.</li> <li>To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Course Outcomes   | Students would be able                                                          |           |
| <ul> <li>physical and chemical measurands.</li> <li>4. To explain the various types of transducers found in biosensors and their significance.</li> <li>5. To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                 | 2. To classify the different types of bio-sensors and descr<br>characteristics. | ibe their |
| <ul> <li>4. To explain the various types of transducers found in biosensors and their significance.</li> <li>5. To explain about the various basic signal processing techniques used in bio-signal acquisition and analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | -                                                                               | or        |
| used in bio-signal acquisition and analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 4. To explain the various types of transducers found in bi                      | osensors  |
| 6. To apply the appropriate biosensor for different applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                                                                 | chniques  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | 6. To apply the appropriate biosensor for different applic                      | ations.   |

# **Details of Syllabus :**

Prerequisite: Knowledge about bio-signals and their specifications, Knowledge about the basic working principle of various transducers

| Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hrs | CO<br>Mapping |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | <b>Bioelectricity and Bio-electric Phenomena</b><br>Sensors / receptors in the human body, basic organization of<br>nervous system-neural mechanism and circuit processing.<br>Electrode theory, electrode-tissue interface, metal-electrolyte                                                                                                                                                                                                                    | 04  | CO1           |
|        | interface, electrode-skin interface, electrode impedance, electrical conductivity of electrode jellies and creams.                                                                                                                                                                                                                                                                                                                                                |     |               |
| 2      | Introduction to biological sensors<br>Sensor architecture and Classification of biosensors: Medically<br>significant measurands, functional specifications of medical<br>sensors; Bio-sensor characteristics: linearity, repeatability,<br>hysteresis, drift; Bio-sensor models in the time & frequency<br>domains.                                                                                                                                               | 04  | CO2           |
| 3      | <b>Physical and Chemical Biosensors</b><br>Bio-sensors for physical measurands: strain, force, pressure, acceleration, flow, volume, temperature and bio potentials. Bio-<br>sensors for measurement of chemicals: Potentiometric sensors, ion selective electrodes, Amperometric sensors, Clark Electrode biosensors, Catalytic biosensors, Immuno-sensors.                                                                                                      | 09  | CO3           |
| 4      | <b>Transducers in Biosensors</b><br>Various types of transducers; principles and applications -<br>Resistive, Capacitive, Inductive, Photoelectric, piezoelectric,<br>mechanical and molecular electronics based transducers in<br>biosensors. Chemiluminiscene - based biosensors, Liquid and<br>solid ion exchange membrane electrode, Enzyme electrode,<br>Principle of fiber optic cable, fiber optic sensors, Photo acoustic<br>sensors in biomedical field. | 09  | CO4           |
| 5      | <b>Bio-signal Acquisition and Processing</b><br>Measuring ultra-small signals, noise. Electrical signals produced<br>by cells, Various types of signal processing techniques used for<br>bio-signals.                                                                                                                                                                                                                                                             | 05  | CO5           |
| 6      | Applications of Biosensors<br>Biosensors in clinical chemistry, medicine and health care,<br>biosensors for veterinary, agriculture and food, Low cost-<br>biosensor for industrial processes for online monitoring;<br>biosensors for environmental monitoring.                                                                                                                                                                                                  | 05  | CO6           |

# **Internal Assessment:**

# **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

# **Text Books:**

- 1. Richard S.C. Cobbold, "Transducers for Biomedical Measurements: Principles and Applications", John Wiley & Sons, 1992.
- 2. A.P.F. Turner, I. Karube & G.S. Wilson, "Biosensors: Fundamentals & Applications", Oxford University Press, Oxford, 1987.
- 3. Rangan C.S., Sarma G.R., and Mani V.S.V., "Instrumentation devices and system", Tata McGraw Hill Publishing Company limited, New Delhi, 2006.
- 4. John G.Webster, "Medical Instrumentation: Application and Design", John willey and sons, 1999.
- 5. Jacob Kline, "Handbook of Bio Medical Engineering", Academic press Inc., Sandiego, 1988.

- 1. Richard Aston: Principles of Biomedical Instrumentation and Measurement, Merril Publishing Co., Columbus, 1990.
- 2. Ernest O. Doeblin: Measurement Systems, Application and Design, McGraw-Hill, 1985.
- 3. R. S. Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw Hill.

| Subject   | Subject Name               | Teaching | Scheme        | Credit Assign | ed            |       |
|-----------|----------------------------|----------|---------------|---------------|---------------|-------|
| code      | 5                          | Theory   | Pract. / Tut. | Theory        | Pract. / Tut. | Total |
| ISDL06024 | Nuclear<br>Instrumentation | 3        | -             | 3             | 5             | 3     |

| Sub Code  | Subject<br>Name                | ] ]   | Theory(ou  |      |            | tion Scher<br>Term<br>work | me<br>Pract.<br>and | Oral | Total |
|-----------|--------------------------------|-------|------------|------|------------|----------------------------|---------------------|------|-------|
|           |                                |       | al Assessi | 1    | End<br>sem | WORK                       | Oral                |      |       |
|           |                                | Test1 | Test2      | Avg. | Exam       |                            |                     | 0    |       |
| ISDLO6024 | Nuclear<br>Instrum<br>entation | 20    | 20         | 20   | 80         | -                          | S                   | -    | 100   |

| Subject Code      | Subject Name                                               | Credits    |
|-------------------|------------------------------------------------------------|------------|
|                   | $\cdot \circ \circ$                                        |            |
|                   | Nuclear Instrumentation                                    | 3          |
| ISDL06024         |                                                            |            |
| Course Objectives | 1. To introduce the basic concept of radioactivity, pro    | -          |
|                   | alpha, beta and gamma rays and study various radiation     | detectors  |
|                   | 2. To study the electronics and counting systems           |            |
|                   | 3. To study applications of nuclear instrumentation in a   | nedicines, |
|                   | Industry and in Agriculture.                               |            |
| Course Outcomes   | Students would be able                                     |            |
|                   | 1. To explain basics of radioactivity, properties of alpha | , beta and |
|                   | gamma rays.                                                |            |
|                   | 2. To compare construction and working of various          | radiation  |
|                   | detectors.                                                 |            |
|                   | 3. To describe electronics and counting systems used       | in nuclear |
|                   | instrumentation to process nuclear detector signal.        |            |
|                   | 4. To list various factors influencing resolution of gamma | na energy  |
|                   | spectrum and specifications of nuclear ADC.                |            |
| Ť                 | 5. To apply nuclear radiation detectors in medicine        |            |
| •                 | 6. To apply nuclear instrumentation in industry.           |            |

**Pre-Requisites:** Students should know the basics of digital, analog electronics and signal conditioning circuits which is required in understanding the working of nuclear instruments.

| Module | Topics                                                                                                                                                                                                        | Hrs. | CO  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 1      | <b>Radioactivity</b> : General properties of Nucleus, Radioactivity, Nature of Nuclear Radiation's, Properties of Alpha, Beta and Gamma rays,                                                                 | 06   | CO1 |
|        | Natural and artificial radio-activity. Radioactivity Laws, Half-life<br>period, radioactive series, Isotopes and Isobars, Various effects-<br>photoelectric, Compton scattering and pair production, stopping |      | C   |
|        | power and range of charged nuclear particles.                                                                                                                                                                 |      |     |
| 2      | Radiation Detectors : Techniques for radiation detection, Detectors                                                                                                                                           | 12   | CO2 |
|        | for Alpha, beta and gamma rays, Detector classification, Gas filled                                                                                                                                           |      |     |
|        | detectors - volt ampere characteristics, Ionization chamber,                                                                                                                                                  |      |     |
|        | Proportional counter, Geiger Muller counter, Designing features,                                                                                                                                              |      |     |
|        | Scintillation detectors, Photomultiplier tube, dark currents, pulse                                                                                                                                           | •    |     |
|        | resolving power, efficiency of detection, Solid state detectors                                                                                                                                               |      |     |
|        | (Lithium ion drifted – Si-Li, Ge-Li, Diffused junction, surface barrier detectors)                                                                                                                            |      |     |
| 3      | Electronics and Counting systems: Pre-amp, shaping amplifiers,                                                                                                                                                | 04   | CO3 |
| 5      | Discriminators, Scalars and count rate meters, Pulse shaping, peak                                                                                                                                            | 04   |     |
|        | stretchers, photon counting system block diagram, single channel                                                                                                                                              |      |     |
|        | analyser SCA (pulse height analyser - PHA), Coincidence detection                                                                                                                                             |      |     |
| 4      | Nuclear Spectroscopy systems: Factors influencing resolution of                                                                                                                                               | 04   | CO4 |
|        | gamma energy spectrum, Energy resolution in radiation detectors,                                                                                                                                              |      |     |
|        | Multichannel analysers (MCA), Role of Nuclear ADC's –                                                                                                                                                         |      |     |
|        | performance parameters.                                                                                                                                                                                       |      | ~~~ |
| 5      | Radiation Monitors & Application in Medicines: Radiation uptake                                                                                                                                               | 06   | CO5 |
|        | studies – block diagram and design features. Gamma camera – design, block diagram, medical usage. Nuclear instrumentation for                                                                                 |      |     |
|        | health care, Radiation Personnel Health Monitors like neutron                                                                                                                                                 |      |     |
|        | monitors, Gamma Monitors, Tritium monitors, Iodine monitors and                                                                                                                                               |      |     |
|        | PARA (particulate activity radiation alarms).                                                                                                                                                                 |      |     |
| 6      | Industrial Applications: Basic Nuclear Instrumentation system -                                                                                                                                               | 04   | CO6 |
|        | block diagram, Personal monitors like Thermo Luminescence                                                                                                                                                     |      |     |
| $\sim$ | Detectors (TLD). Dosimeters, Tele-detectors. Nuclear                                                                                                                                                          |      |     |
|        | Instrumentation for power reactor. Nuclear Instrumentation for                                                                                                                                                |      |     |
|        | Toxic fluid tank level measurement, weighing, thickness gauges,                                                                                                                                               |      |     |
|        | Agriculture applications like food irradiation, Underground Piping                                                                                                                                            |      |     |
| -      | Leak detection, water content measurement etc.                                                                                                                                                                |      |     |

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Theory Examination:**

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4
- to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

### **Text Books:**

- 4. G.F. Knoll, "Radiation Detection & Measurement", 2<sup>nd</sup> edition, John Wiley & Sons, 1998.
- 5. P.W. Nicholson, "Nuclear Electronics", John Wiley, 1998.
- 6. S.S. Kapoor & V.S. Ramamurthy, "Nuclear Radiation Detectors", Wiley Easter Limited, 1986.

### **Reference Books:**

- 1. Gaur & Gupta, "Engineering Physics", Danpat Rai & Sons, 2001.
- 2. Irvin Kaplan, "Nuclear Physics", Narosa, 1987.
- 3. M.N. Avdhamule & P.G. Kshirsagar, "Engineering Physics", S.Chand & Co., 2001.
- 4. R.M. Singru, "Introduction to Experimental Nuclear Physics", Wiley Eastern Pvt. Ltd., 1974.
- 5. Hand Book of Nuclear Medical Instruments, Edited by B.R.Bairi, Balvinder Singh, N.C. Rathod, P.V. Narurkar, TMH Publishing New Delhi, 1974.

| Subject<br>code | Subject Name                                          | Teaching scheme |            |          | Credit assigned |            |     |            |
|-----------------|-------------------------------------------------------|-----------------|------------|----------|-----------------|------------|-----|------------|
| ISL601          | Process<br>Instrumentation<br>System- Lab<br>Practice | Theory<br>-     | Pract<br>2 | Tut<br>- | Theory<br>-     | Pract<br>1 | Tut | Total<br>1 |

|         | System- Lab<br>Practice |       |          |       |      |      |        |      |       | $\mathbf{O}$ |
|---------|-------------------------|-------|----------|-------|------|------|--------|------|-------|--------------|
|         |                         |       |          |       |      |      |        |      |       |              |
| Sub     | Subject Name            | Exar  | nination | schen | ne   |      |        |      |       |              |
| Code    |                         |       |          |       |      | Term | Pract. | Oral | Total |              |
|         |                         | Inter | rnal     |       | End  | work | And    |      |       |              |
|         |                         | Asse  | ssment   |       | sem  |      | oral   | Co   | •     |              |
|         |                         |       |          |       | exam |      |        |      |       |              |
|         |                         | Tes   | Test     | Avg   |      |      |        |      |       |              |
|         |                         | t     | 2        |       |      |      |        |      |       |              |
|         |                         | 1     |          |       |      |      |        |      |       |              |
| ISL 601 | Process                 | -     | -        | -     | -    | 25   |        | 25   | 50    |              |
|         | Instrumentation         |       |          |       |      |      |        |      |       |              |
|         | System- Lab             |       |          |       |      |      |        |      |       |              |
|         | Practice                |       |          |       |      |      |        |      |       |              |

| Subject Code     | Subject Name                                                                                              | Credits     |
|------------------|-----------------------------------------------------------------------------------------------------------|-------------|
| ISL 601          | <b>Process Instrumentation System- Lab Practice</b>                                                       | 1           |
| Course objective | 1. To make the students to familiar with differen                                                         | t Process   |
|                  | Dynamics & process control actions.                                                                       |             |
|                  | 2. Students are expected to learn classification & w                                                      | orking of   |
|                  | Controllers & Tuning Methods.                                                                             |             |
|                  | 3. Students are expected to understand various control sci                                                | hemes.      |
|                  | 4. To familiarize concept of Multivariable Control & Dis                                                  | crete state |
|                  | process control Requirement.                                                                              |             |
| Course Outcome   | The students will be able to                                                                              |             |
|                  | 1. Understand & Learn Process Control Terminologies                                                       | s, Process  |
|                  | Dynamics & their mathematical model.                                                                      |             |
|                  | 2. Understand different types of control actions & their se                                               | election.   |
|                  | 3. Learn Features & Classify controllers like electronic,                                                 | pneumatic   |
|                  | and hydraulic & their Tuning Techniques.                                                                  |             |
|                  | <ol> <li>Learn various process control schemes &amp; their applicat<br/>selection.</li> </ol>             | tions and   |
| $\sim$           | 5. Understand Multivariable Control systems & their Inte                                                  | raction     |
|                  | <ol> <li>The students will be able to develop relay logic for var<br/>processes &amp; symbols.</li> </ol> |             |
|                  |                                                                                                           |             |

Syllabus: Same as that of Subject ISC601 Process Instrumentation System.

### List of Laboratory Experiments:

| Sr.<br>No. | Detailed Content                                                                                                             | CO<br>Mapping |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| 1          | 1 Study Features & operation of ON-OFF Controller & its Application.                                                         |               |  |  |  |  |  |
| 2          | Familiarization of various control actions (pure and composite) using<br>PID controller with Real time Process OR Simulator. | CO2           |  |  |  |  |  |
| 3          | Testing Features, specifications, wiring & operation of an electronic PID controller.                                        | CO3           |  |  |  |  |  |
| 4          | Tuning of an Electronic PID controller.                                                                                      | CO3           |  |  |  |  |  |
| 5          | Analysis of Feedback Control using Level / Pressure / Flow /<br>Temperature Control Loop.                                    | <b>CO</b> 4   |  |  |  |  |  |
| 6          | Study Feed Forward Control system using Temperature control Loop.                                                            | CO4           |  |  |  |  |  |
| 7          | Study of split range control system using Pressure Control set up.                                                           | CO4           |  |  |  |  |  |
| 8          | Study of Ratio control system using Flow Control Loop.                                                                       | CO4           |  |  |  |  |  |
| 9          | Study of Cascade control system.                                                                                             | CO4           |  |  |  |  |  |
| 10         | Study Dynamic behaviour of First Order Hydraulic system.                                                                     | CO1           |  |  |  |  |  |
| 11         | Study Dynamic behaviour of Second Order Hydraulic system.                                                                    | CO1           |  |  |  |  |  |
| 12         | Development & Implementation of Relay Ladder Logic for Discrete state process control system.                                | CO6           |  |  |  |  |  |
| 13         | Assignment on Relative gain analysis.                                                                                        | CO5           |  |  |  |  |  |

Note:

\*Factory / Industrial visit is suggested to understand the Practical knowledge of the subject.

### **Oral Examination:**

Oral examination will be based on Laboratory work & Entire syllabus.

### Term Work:

Term work shall consist of minimum eight experiments.

| The distribution of marks for term work shall be as follows: |            |
|--------------------------------------------------------------|------------|
| Laboratory work (Experiments)                                | : 10 Marks |
| Laboratory work (programs/assignments / journal)             | : 10 Marks |
| Attendance (Class Room & Laboratory)                         | : 05 Marks |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Sub    | Subjec tName                   | Teaching Scheme(Hrs) |        |        | CreditsAssigned |        |      |       |
|--------|--------------------------------|----------------------|--------|--------|-----------------|--------|------|-------|
| code   | Subjec tivalle                 | Theory               | Pract. | Tut.   | Theor           | Pract. | Tut. | Total |
|        |                                |                      |        |        | У               |        |      |       |
| ISL602 | Industrial Data                |                      |        |        |                 |        |      |       |
|        | Communication-<br>Lab Practice | -                    | 2      | -      | -               | 1      | 9    | 1     |
| I      |                                | 1                    |        |        |                 | 1      |      |       |
|        |                                |                      |        | Examir | nation S        | cheme  |      |       |

|        |                                                   |                            | Examination Scheme |                |             |          |             |      |       |  |   |
|--------|---------------------------------------------------|----------------------------|--------------------|----------------|-------------|----------|-------------|------|-------|--|---|
| Sub    |                                                   | Internal<br>Assessment(out |                    | Assessment(out |             | Internal |             | Term |       |  | • |
| Code   | Subject Name                                      | Test1                      | of20)<br>Test<br>2 | Avg.           | sem<br>Exam | Work     | and<br>oral | Oral | Total |  |   |
| ISL602 | Industrial Data<br>Communication-<br>Lab Practice | -                          |                    | 0              |             | 25       | -           | -    | 25    |  |   |

| Subject Code             | Subject Name                                                                         | Credits     |
|--------------------------|--------------------------------------------------------------------------------------|-------------|
| ISL602                   | Industrial Data Communication-Lab Practice                                           | 1           |
| <b>Course Objectives</b> | 1. To expose the students to the basics of communication                             |             |
|                          | 2. To create awareness about the the OSI refrence model                              | •           |
|                          | 3. To acquaint the students with the different types of no                           | etworks at  |
|                          | various levels such as sensor level, device network as                               | nd control  |
|                          | network.                                                                             |             |
|                          | 4. To provide sufficient knowledge about the HART.                                   |             |
|                          | 5. To impart the fundamentals of foundation field bus.                               |             |
| Course Outcomes          | The students will be able to                                                         |             |
|                          | 1. Franking the immediate of the help time in communication                          |             |
|                          | 1. Explain the importance of modulation in communication.                            |             |
|                          | <ol> <li>Examine the importance of OSI,TCP/IP model,various n components.</li> </ol> | etworking   |
|                          | 3. Compare the different types of networks at various leve communication.            | ls of field |
|                          | 4. Use HART for communication                                                        |             |
|                          | 5. Establish Foundation fieldbus communication.                                      |             |
|                          | 6. Investigate the various wireless devices.                                         |             |

Syllabus: Same as that of Subject ISC602 Industrial Data Communication.

### List of Laboratory Experiments/ Assignments:

| Sr.<br>No. | Detailed Content                                      | CO<br>Mapping |
|------------|-------------------------------------------------------|---------------|
| 1          | To Study the various modulation techniques(AM,FM,PWM) | CO1           |
| 2          | To Study the networking components                    | CO2           |
| 3          | To understand LAN                                     | CO3           |
| 4          | To study HART Protocol.                               | CO4           |
| 5          | To calibrate various transmitters using HART          | <b>CO</b> 4   |
| 6          | To study the components of Foundation Field Bus.      | CO5           |
| 7          | To study Zigbee                                       | CO6           |
| 8          | Assignment on MODBUS protocol.                        | CO3           |
| 9          | Assignment onEthernet.                                | CO3           |
| 10         | Assignment on application of IOT                      | CO6           |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

: 5 Marks

### Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) : 10 Marks

Laboratory work (programs / journal): 10 Marks

Attendance

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name | Teaching | scheme |      | Credit assi | gned   |      |       |
|-----------------|--------------|----------|--------|------|-------------|--------|------|-------|
| <b>ISL603</b>   | Electrical   | Theory   | Pract. | Tut. | Theory      | Pract. | Tut. | Total |
|                 | Machines and | -        | 2      | -    | -           | 1      | -    | 1     |
|                 | Drives – Lab |          |        |      |             |        |      |       |
|                 | Practice     |          |        |      |             |        |      |       |

| Sub           | Subject Name   | Exami   | nation so        | cheme |      |      |        |      |              |
|---------------|----------------|---------|------------------|-------|------|------|--------|------|--------------|
| Code          | Buejeet Plante | Lituiti | <u>nution st</u> |       |      | Term | Pract. | Oral | Total        |
|               |                | Interna | al Assess        | ment  | End  | work | and    |      | <b>(</b>     |
|               |                |         |                  |       | sem  |      | Oral   |      |              |
|               |                |         |                  |       | Exam |      |        |      |              |
|               |                | Test1   | Test2            | Avg   |      |      |        |      | $\mathbf{)}$ |
| <b>ISL603</b> | Electrical     | -       | -                | -     | -    | 25   | 7 -    | 25   | 50           |
|               | Machines and   |         |                  |       |      |      |        |      |              |
|               | Drives– Lab    |         |                  |       |      |      |        |      |              |
|               | Practice       |         |                  |       |      |      |        |      |              |

1

| Subject Code             | Subject Name Credits                                                  |  |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------|--|--|--|--|--|--|--|
| ISL603                   | Electrical Machines and Drives – Lab Practice 1                       |  |  |  |  |  |  |  |
| <b>Course Objectives</b> | 1. To learn operation & speed control methods of electric motors.     |  |  |  |  |  |  |  |
|                          | 2. To learn operations of semiconductor devices & their applications. |  |  |  |  |  |  |  |
| <b>Course Outcomes</b>   | Students will be able to                                              |  |  |  |  |  |  |  |
|                          | 1. Perform speed control of DC motor by different methods             |  |  |  |  |  |  |  |
|                          | 2. Describe working principle of three-phase and single -phase        |  |  |  |  |  |  |  |
|                          | induction motors.                                                     |  |  |  |  |  |  |  |
|                          | 3. Study the characteristics of semiconductor devices                 |  |  |  |  |  |  |  |
|                          | 4. Use semiconductor devices to build different circuits              |  |  |  |  |  |  |  |
|                          | 5. Apply drives for speed control of DC motor.                        |  |  |  |  |  |  |  |
|                          | 6. Discuss the working of AC drive for I.M.                           |  |  |  |  |  |  |  |

Syllabus same as that of subject ISC603 Electrical Machines and Drives

### List of Laboratory Experiments:

| Sr. No. | Detailed Contents                                                     | CO      |
|---------|-----------------------------------------------------------------------|---------|
|         |                                                                       | mapping |
|         | Speed control methods of DC motor                                     | CO1     |
| 2       | Starting of 3-phase IM by DOL/Autotransformer/rotor resistance method | CO2     |
| 3       | Study of different types of fractional horse power motor              | CO2     |
| 4       | Plot V-I characteristics of SCR                                       | CO3     |
| 5       | Plot V-I characteristics of Triac                                     | CO3     |

| 6  | Triac based AC power control circuit.      | CO3        |
|----|--------------------------------------------|------------|
| 7  | Half wave & full wave controlled rectifier | CO4        |
| 8  | SCR Based Inverter                         | <b>CO4</b> |
| 9  | MOSFET/IGBT Based Inverter                 | CO4        |
| 10 | DC motor speed control drive               | CO5        |
| 11 | AC drive for I.M.                          | CO6        |

\*\*Any other additional experiments based on syllabus which will help students to understand topic/concept.

### **Oral Examination:**

Oral examination will be based on entire syllabus.

### Term Work:

Term work shall consist of minimum Eight experiments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : 10 Marks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Laboratory work (programs /journal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 10 Marks |
| Attendance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : 05 Marks |
| The final continue of the sector of the sect |            |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name    | Teaching scheme |        |      | Credit assigned |        |      |       |
|-----------------|-----------------|-----------------|--------|------|-----------------|--------|------|-------|
| ISL604          | Digital Signal  | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |
|                 | Processing- Lab | -               | 2      | -    | -               | 1      | -    | 1     |
|                 | Practice        |                 |        |      |                 |        |      |       |
|                 |                 |                 |        |      |                 |        |      |       |

| Sub    | Subject Name          | Exami   | nation sc | heme |         |      |        |      |       |
|--------|-----------------------|---------|-----------|------|---------|------|--------|------|-------|
| Code   |                       |         |           |      |         | Term | Pract. | Oral | Total |
|        |                       | Interna | al Assess | ment | End sem | work | and    |      |       |
|        |                       |         |           |      | Exam    |      | Oral   |      |       |
|        |                       | Test1   | Test2     | Avg. |         |      |        |      |       |
| ISL604 | <b>Digital Signal</b> | -       | -         | -    | -       | 25   | 25     | -    | 50    |
|        | Processing-           |         |           |      |         |      |        |      |       |
|        | Lab Practice          |         |           |      |         |      |        |      |       |
|        |                       |         |           |      |         |      |        |      |       |

| Subject Code      | Subject Name                                                           | credits                                                         |  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|--|
| ISL604            | Digital Signal Processing- Lab Practice                                | 1                                                               |  |  |  |  |  |  |  |
| Course objectives | 1. Study simulation software platform for digital signal proc          | essing and                                                      |  |  |  |  |  |  |  |
|                   | Plot different type of signals.                                        |                                                                 |  |  |  |  |  |  |  |
|                   | To understand the concept of linear, circular convolution, correlation |                                                                 |  |  |  |  |  |  |  |
|                   | and simulate it by computer software.                                  |                                                                 |  |  |  |  |  |  |  |
|                   | 3. To understand Fourier transform and its algorithms such a           | as FFT and                                                      |  |  |  |  |  |  |  |
|                   | IFFT and simulate it.                                                  |                                                                 |  |  |  |  |  |  |  |
|                   | 4. To design and implement filters both FIR and IIR using              | To design and implement filters both FIR and IIR using computer |  |  |  |  |  |  |  |
|                   | simulation.                                                            |                                                                 |  |  |  |  |  |  |  |
|                   | 5. To study DSP processors, adaptive filters and their applicat        | tions.                                                          |  |  |  |  |  |  |  |
| Course Outcomes   | Students will be able to -                                             |                                                                 |  |  |  |  |  |  |  |
|                   | 1. Verify sampling theorem using simulation software.                  |                                                                 |  |  |  |  |  |  |  |
| 0                 | 2. Demonstrate DT Fourier analysis, convolution and                    | correlation                                                     |  |  |  |  |  |  |  |
|                   | concept using simulation software.                                     |                                                                 |  |  |  |  |  |  |  |
|                   | 3. Perform Fast Fourier Transform of signals.                          |                                                                 |  |  |  |  |  |  |  |
|                   | 4. Design and implement FIR and IIR filters using computer             | simulation                                                      |  |  |  |  |  |  |  |
|                   | software platform.                                                     |                                                                 |  |  |  |  |  |  |  |
|                   | 5. Realize filters by direct form I, II, Cascade and Parallel for      | rm.                                                             |  |  |  |  |  |  |  |
|                   | 6. Study DSP processors, Adaptive filters and their applicatio         | ns.                                                             |  |  |  |  |  |  |  |

Syllabus same as that of subject ISC604 Digital Signal Processing

## List of Laboratory Experiments:

| Sr.<br>No. | Detailed Contents                                                                                                                       | CO<br>mapping |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1          | Generation of DT sinusoidal signal and verification of sampling theorem.                                                                | CO1           |
| 2          | Finding the Impulse response of the system.                                                                                             | CO2           |
| 3          | Program for finding linear convolution, Circular convolution, and linear convolution by using circular convolution technique.sequences. | CO2           |
| 4          | Program for finding correlation (auto and cross).                                                                                       | CO2           |
| 5          | Computation of N point DFT of a given sequence and to plot magnitude and                                                                | CO3           |

| 6  | Computing circular convolution by DFT and IDFT of signals.               | CO3 |
|----|--------------------------------------------------------------------------|-----|
| 7  | Implementation of FFT algorithms (DIT, DIF) etc.                         | CO3 |
| 8  | Designing of FIR filter using windowing technique.                       | CO4 |
| 9  | Design and Implement IIR filter to meet given specifications.            | CO4 |
| 10 | Assignment on Filter Implementation direct form I, II, Cascade, Parallel | CO5 |
| 11 | Study of Adaptive filters such as LMS, RLS and its applications.         | CO6 |
| 12 | Study of DSP processor and its applications.                             | CO6 |

Any other additional experiments based on syllabus which will help students to understand topic/concept.

### **Oral Examination:**

Oral examination will be based on entire syllabus.

### Term Work:

Term work shall consist of minimum Eight experiments.The distribution of marks for term work shall be as follows:Laboratory work (Experiments): 10 MarksLaboratory work (programs /journal): 10 MarksAttendance: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name     | Teaching | scheme |      | Credit assigned |        |      |       |
|-----------------|------------------|----------|--------|------|-----------------|--------|------|-------|
| <b>ISL605</b>   | Advanced         | Theory   | Pract. | Tut. | Theory          | Pract. | Tut. | Total |
|                 | Control System - | -        | 2      | -    | -               | 1      | -    | 1     |
|                 | Lab Practice     |          |        |      |                 |        |      |       |

| Sub    | Subject Name     | Exami   | nation sc | heme |         |      |        |      |       |
|--------|------------------|---------|-----------|------|---------|------|--------|------|-------|
| Code   |                  |         |           |      |         | Term | Pract. | Oral | Total |
|        |                  | Interna | al Assess | ment | End sem | work | and    |      |       |
|        |                  |         |           |      | Exam    |      | Oral   |      |       |
|        |                  | Test1   | Test2     | Avg. |         |      |        |      |       |
| ISL605 | Advanced         | -       | -         | -    | -       | 25   | 25     | -    | 50    |
|        | Control System - |         |           |      |         |      |        |      |       |
|        | Lab Practice     |         |           |      |         |      |        |      |       |
|        |                  |         |           |      |         |      |        |      |       |
|        |                  |         |           |      |         |      |        |      |       |

| Subject Code           | Subject Name                                                            | credits      |  |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| ISL605                 | Advanced Control System- Lab Practice                                   | 1            |  |  |  |  |  |  |
| Course objectives      | 1. Students should be able to examine stability of limit cycle          |              |  |  |  |  |  |  |
|                        | 2. The students should be able to examine stability of nonlinear system |              |  |  |  |  |  |  |
|                        | using DF techniques and Lyapunov's functions                            |              |  |  |  |  |  |  |
|                        | 3. The students should be able to design the IMC structure.             |              |  |  |  |  |  |  |
|                        | 4. The students should able to examine the stability using sliding mode |              |  |  |  |  |  |  |
|                        | control                                                                 |              |  |  |  |  |  |  |
|                        | 5. Students can be able to optimize the any particular system.          |              |  |  |  |  |  |  |
|                        |                                                                         |              |  |  |  |  |  |  |
| <b>Course Outcomes</b> | Students will be able to                                                |              |  |  |  |  |  |  |
|                        | 1. Construct the phase-plane trajectories using Delta Method.           |              |  |  |  |  |  |  |
|                        | 2. Classify stability of limit cycle as per obtained response of        | the system   |  |  |  |  |  |  |
|                        | 3. Derive DF for common nonlinearities and investigate                  | stability of |  |  |  |  |  |  |
|                        | system with limit cycle.                                                |              |  |  |  |  |  |  |
|                        | 4. Determine Lyapunov's function and also able to inve                  | estigate the |  |  |  |  |  |  |
|                        | stability of nonlinear system                                           | -            |  |  |  |  |  |  |
|                        | 5. Design the IMC structure and apply same for stability analysis.      |              |  |  |  |  |  |  |
|                        | 6. Design IMC based PID controller.                                     |              |  |  |  |  |  |  |
|                        |                                                                         |              |  |  |  |  |  |  |

Syllabus same as that of subject ISC605 Advanced Control System

### List of Laboratory Experiments:

| Sr. | Detailed Contents                                                            | CO      |
|-----|------------------------------------------------------------------------------|---------|
| No. |                                                                              | mapping |
| 1   | Construct the trajectory for system represented by second order              | CO1     |
|     | differential equation and for any initial condition by using Delta Method.   |         |
| 2   | Study behaviour of limit cycle with the help of Vander Pol's equation.       | CO2     |
| 3   | Derivation of DF for nonlinearities – relay with saturation, relay with      | CO3     |
|     | dead-zone, dead-zone and saturation etc.                                     |         |
| 4   | Investigate the stability of system with nonlinearities - relay, saturation, | CO3     |
|     | dead-zone and existence of limit cycle using DF technique.                   |         |
| 5   | Verify Sylvester theorem for the definiteness of the Lyapunov Function.      | CO4     |

| 6  | Determine the stability of the system and construct the Lyapunov function  | CO4        |
|----|----------------------------------------------------------------------------|------------|
|    | for Linear Time invariant system                                           |            |
| 7  | By using Krasovskii method determine the stability of the system and       | CO4        |
|    | construct the Lyapunov function.                                           |            |
| 8  | By using Variable Gradient method determine the stability of the           | <b>CO4</b> |
|    | nonlinear system                                                           |            |
| 9  | Effect of filter tuning parameter on step response of the first and second | CO5        |
|    | order systems                                                              |            |
| 10 | Design of IMC controller for a system subject to step input.               | CO5        |
| 11 | Design of IMC controller for a system subject to ramp input.               | CO5        |
| 12 | Design of IMC based PID controller.                                        | CO6        |
| 13 | Design of IMC controller for delay and non-minimum phase systems.          | CO5        |

Any other additional experiments based on syllabus which will help students to understand topic/concept.

### **Oral Examination:**

Oral examination will be based on entire syllabus.

### Term Work:

Term work shall consist of minimum eight experiments. The distribution of marks for term work shall be as follows: Laboratory work (Experiments) : 10 Marks Laboratory work (programs /journal) : 10 Marks Attendance : 5 Marks The final cartification and eccenteries of term work ensures

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject | Subject    | Teaching | g scheme |      | Credit assigned |        |      |       |
|---------|------------|----------|----------|------|-----------------|--------|------|-------|
| code    | Name       |          |          | i.   |                 |        |      |       |
| ISL606  | Mini       | Theory   | Pract.   | Tut. | Theory          | Pract. | Tut. | Total |
|         | Project-II | -        | 2        | -    | -               | 1      | -    | 1     |

| Sub<br>Code | Subject<br>Name |                     | ation sche<br>(out of 100 | Term | Pract | Oral | Total |   |    |
|-------------|-----------------|---------------------|---------------------------|------|-------|------|-------|---|----|
|             |                 | Internal Assessment |                           |      | End   | work | . and |   |    |
|             |                 | Test1               | Test2                     | Avg. | sem   |      | Oral  |   |    |
|             |                 |                     |                           |      | Exam  |      |       |   |    |
| ISL606      | Mini Project-   | -                   | -                         | -    | -     | 25#  |       | - | 25 |
|             | II              |                     |                           |      |       |      |       |   |    |

# Mini Project will be based on internal oral and project report.

### Term Work:

The main intention of Mini Project is to make student enable to apply the knowledge and skills learned from the courses studied to solve/implement predefined challenging practical problems of interdisciplinary nature .The students undergo various laboratory/tutorial/simulation laboratory courses in which they do experimentation based on the curriculum requirement. The students should be encouraged to take challenging problems of interdisciplinary nature. The emphasis should be on

• Learning additional skills

• Development of ability to define and design the problem and lead to its accomplishment with proper planning.

• Learn the behavioral science by working in a group.

The group may be of maximum four (04) students. Each group will be assigned one faculty as a supervisor. The college should keep proper assessment record of progress of the project and at the end of the semester it should be assessed for awarding TW marks. The TW may be examined by approved internal faculty appointed by the head of the institute. The TW marks will be allocated based on the internal examination of demonstration in front of the examiner. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained about the completed task.

The students may use this opportunity to learn different design techniques in instrumentation, control and electronics. This can be achieved by making a proper selection of Mini Project.



# **UNIVERSITY OF MUMBA**



Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

# FACULTY OF TECHNOLOGY

# **Instrumentation Engineering**

Final Year with Effect from AY 2019-20

As per Choice Based Credit and Grading System with effect from the AY 2016–17

### From Co-Coordinator's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated, and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai, has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's), course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of Studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enable a much-required shift in focus from teacher-centric to learner-centric education. Since the workload estimated is based on the investment of time in learning, not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. **Choice Based Credit and Grading System** were implemented for First Year of Engineering (Undergraduate) from the academic year 2016-2017. Subsequently this system will be carried forward for Second Year of Engineering (Undergraduate) in the academic year 2017-2018 and so on.

Dr. Suresh K. Ukarande Coordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

 $\leftarrow$ 

## **Preamble:**

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and to achieve recognition of the institution or program meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a student will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Instrumentation Engineering, more than ten senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs and POs of undergraduate program in Instrumentation Engineering are listed below;

### **Program Educational Objectives (PEOs)**

- Graduates will have successful career in industry or pursue higher studies to meet future challenges of technological development.
- Graduates will develop analytical and logical skills that enable them to analyze and design Instrumentation and Control Systems.
- Graduates will achieve professional skills to expose themselves by giving an opportunity as an individual as well as team.
- > Graduates will undertake research activities in emerging multidisciplinary fields.

### Program Outcomes (POs)

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- > Conduct investigations of complex problems: Use research-based knowledge and research

- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Dr. S. R. Deore, Chairman, Board of Studies in Electrical Engineering, Member - Academic Council University of Mumbai

## **Program Structure for BE Instrumentation Engineering** University of Mumbai (With Effect from 2019-20)

## Scheme for Semester VII

|               |                                                        |            |                                    |              |        |                  | •            |       |  |  |
|---------------|--------------------------------------------------------|------------|------------------------------------|--------------|--------|------------------|--------------|-------|--|--|
| Course        | Course Name                                            |            | Teaching Scheme<br>(Contact Hours) |              |        | Credits Assigned |              |       |  |  |
| Code          | Course Manie                                           | Theo<br>ry | Practica<br>l                      | Tutoria<br>l | Theory | Practical        | Tutoria<br>l | Total |  |  |
| ISC701        | Industrial Process Control                             | 4          | - 7                                | -            | 4      | -                | -            | 4     |  |  |
| ISC702        | Biomedical Instrumentation                             | 4          |                                    |              | 4      | -                | -            | 4     |  |  |
| ISC703        | Industrial Automation                                  | 4          |                                    | <u> </u>     | 4      | -                | -            | 4     |  |  |
| ISDLO70<br>3X | Department Level Optional<br>Course III                | 4          | -                                  | <b>-</b>     | 4      | -                | -            | 4     |  |  |
| ILO701X       | Institute Level Optional<br>Course I                   | 3          |                                    | -            | 3      | -                | -            | 3     |  |  |
| ISL701        | Industrial Process Control –<br>Lab Practice           |            | 2                                  | -            | -      | 1                | -            | 1     |  |  |
| ISL702        | Biomedical Instrumentation<br>– Lab Practice           |            | 2                                  | -            | -      | 1                | -            | 1     |  |  |
| ISL703        | Industrial Automation – Lab<br>Practice                | 2-         | 2                                  | -            | -      | 1                | -            | 1     |  |  |
| ISL704        | Department Level Optional<br>Course III – Lab Practice | -          | 2                                  | -            | -      | 1                | -            | 1     |  |  |
| ISL705        | Project I                                              | -          | 6                                  | -            | -      | 3                | -            | 3     |  |  |
|               | Total                                                  | 19         | 14                                 | -            | 19     | 07               | -            | 26    |  |  |

## Examination Scheme for Semester VII

|                   |                                                           |                                 |                                       |              |              | 36               |                |
|-------------------|-----------------------------------------------------------|---------------------------------|---------------------------------------|--------------|--------------|------------------|----------------|
|                   |                                                           | Examinatio                      | n Scheme fo                           | r Semester ` | VII          | 6                | <u>G</u>       |
|                   |                                                           |                                 |                                       |              |              |                  |                |
| Course Co<br>Code | Course Name                                               | The<br>End Sem<br>Exam<br>(ESE) | ory<br>Internal<br>Assessment<br>(IA) | Term Work    | Oral         | Pract. &<br>Oral | Total<br>Marks |
|                   |                                                           | Max<br>Marks                    | Max<br>Marks                          | Max<br>Marks | Max<br>Marks | Max<br>Marks     |                |
| ISC701            | Industrial Process<br>Control                             | 80                              | 20                                    | -            | -            | -                | 100            |
| ISC702            | Biomedical<br>Instrumentation                             | 80                              | 20                                    | -            | -            | -                | 100            |
| ISC703            | Industrial<br>Automation                                  | 80                              | 20                                    | -            | -            | -                | 100            |
| ISDLO7<br>03X     | Department Level<br>Optional Course<br>III                | 80                              | 20                                    | -            | -            | -                | 100            |
| ILO701<br>X       | Institute Level<br>Optional Course I                      | 80                              | 20                                    | -            | -            | -                | 100            |
| ISL701            | Industrial Process<br>Control – Lab<br>Practice           | -                               | -                                     | 25           | 25           | -                | 50             |
| ISL702            | Biomedical<br>Instrumentation –<br>Lab Practice           | -                               | -                                     | 25           | 25           | -                | 50             |
| ISL703            | Industrial<br>Automation – Lab<br>Practice                | -                               | -                                     | 25           | 25           | -                | 50             |
| ISL704            | Department Level<br>Optional Course<br>III – Lab Practice | -                               | -                                     | 25           | 25           | -                | 50             |
| ISL705            | Project I                                                 | -                               | -                                     | 50           | 50           | -                | 100            |

### Program Structure for BE Instrumentation Engineering University of Mumbai (With Effect from 2019-20)

## Scheme for Semester VIII

-

٠

| Course        | Course Name                                               |            | aching Scl<br>Contact Ho |              | Credits Assigned |               |              |       |  |
|---------------|-----------------------------------------------------------|------------|--------------------------|--------------|------------------|---------------|--------------|-------|--|
| Code          |                                                           | Theo<br>ry | Practic<br>al            | Tutoria<br>l | Theory           | Practic<br>al | Tutori<br>al | Total |  |
| ISC801        | Instrumentation Project<br>Documentation and<br>Execution | 4          |                          | 0-           | 4                | -             | -            | 4     |  |
| ISC802        | Instrument and System design                              | 4          | -                        | -            | 4                | -             | -            | 4     |  |
| ISDLO80<br>4X | Department Level Optional<br>Course IV                    | 4          | 5                        | -            | 4                | -             | -            | 4     |  |
| ILO802X       | Institute Level Optional<br>Course II                     | 3          |                          | -            | 3                | -             | -            | 3     |  |
| ISL801        | Instrumentation Project<br>Documentation and<br>Execution |            | 2                        | -            | -                | 1             | -            | 1     |  |
| ISL802        | Instrument and System design                              | )-         | 2                        | -            | -                | 1             | -            | 1     |  |
| ISL803        | Department Level Optional<br>Course IV – Lab Practice     | -          | 2                        | -            | -                | 1             | -            | 1     |  |
| ISL804        | Project II                                                | -          | 12                       | -            | -                | 6             | -            | 6     |  |
|               | Total                                                     | 15         | 18                       | -            | 15               | 09            | -            | 24    |  |

## **Examination Scheme for Semester VIII**

|                |                                                              |                       | Examination Scheme             |              |              |                  |       |  |  |  |  |
|----------------|--------------------------------------------------------------|-----------------------|--------------------------------|--------------|--------------|------------------|-------|--|--|--|--|
|                |                                                              | The                   | •                              | , C          |              |                  |       |  |  |  |  |
| Course<br>Code | Course Name                                                  | End Sem<br>Exam (ESE) | Internal<br>Assessment<br>(IA) | Term Work    | Oral         | Pract. &<br>Oral | Total |  |  |  |  |
| Coue           |                                                              | Max<br>Marks          | Max<br>Marks                   | Max<br>Marks | Max<br>Marks | Max<br>Marks     | Marks |  |  |  |  |
| ISC801         | Instrumentation<br>Project<br>Documentation<br>and Execution | 80                    | 20                             | 50           | <b>K</b> -   | -                | 100   |  |  |  |  |
| ISC802         | Instrument and<br>System design                              | 80                    | 20                             | -            | -            | -                | 100   |  |  |  |  |
| ISDLO804X      | Department<br>Level Optional<br>Course IV                    | 80                    | 20                             | -            | -            | -                | 100   |  |  |  |  |
| ILO802X        | Institute Level<br>Optional<br>Course II                     | 80                    | 20                             | -            | -            | -                | 100   |  |  |  |  |
| ISL801         | Instrumentation<br>Project<br>Documentation<br>and Execution | 5-                    | -                              | 25           | 25           | -                | 50    |  |  |  |  |
| ISL802         | Instrument and<br>System design                              | -                     | -                              | 25           | 25           | -                | 50    |  |  |  |  |
| ISL803         | Department<br>Level Optional<br>Course IV– Lab<br>Practice   | -                     | -                              | 25           | 25           | -                | 50    |  |  |  |  |
| ISL804         | Project II                                                   | -                     | -                              | 100          | 50           | -                | 150   |  |  |  |  |
| -              | Total                                                        | 320                   | 80                             | 175          | 125          | -                | 700   |  |  |  |  |

| Subject<br>Code | Subject Name       | Teaching Scheme |         |            |             |        |      |       |   |
|-----------------|--------------------|-----------------|---------|------------|-------------|--------|------|-------|---|
|                 | Industrial         | Theory          | Pract.  | Tut.       | Theory      | Pract. | Tut. | Total |   |
| ISC701          | Process<br>Control | 4               | -       | -          | 4           | (      | Υ-   | 4     |   |
|                 |                    |                 |         |            |             |        |      | 0     |   |
|                 |                    |                 |         | Exa        | mination sc | heme   | Co   | ٠     |   |
|                 |                    | ті              | Man Mar | ulta (100) |             |        |      |       | 1 |

| Subject<br>Code | Subject Name                     | Examination scheme                            |       |      |                  |              |               |      |       |  |  |
|-----------------|----------------------------------|-----------------------------------------------|-------|------|------------------|--------------|---------------|------|-------|--|--|
|                 |                                  | Theory Marks (100<br>Internal Assessment (20) |       |      | ))<br>End<br>Sem | Term<br>work | Pract.<br>and | Oral | Total |  |  |
|                 |                                  | Test1                                         | Test2 | Avg. | Exam             |              | Oral          |      |       |  |  |
| ISC701          | Industrial<br>Process<br>Control | 20                                            | 20    | 20   | 80               |              | -             | -    | 100   |  |  |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | credits |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ISC701            | Industrial Process Control                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |
| Course objectives | <ol> <li>To impart the knowledge of different industrial unit operations.</li> <li>To make the students capable to design and develop instrumentation and control schemes for industrial process</li> <li>To give them overview of various process industries, hazardous areas and their classification.</li> </ol>                                                                                                                                                                   | 5es.    |
| Course Outcomes   | <ol> <li>The students will be able to:</li> <li>1. Explain working and control of various heat transfer unit operations</li> <li>2. Explain working and control of various heat and mass tranunit operations</li> <li>3. Explain the miscellaneous process equipment and their co</li> <li>4. Describe the processes of various continuous process industries and instrumentation involved in them.</li> <li>5. Describe the processes of various batch process industries</li> </ol> | ntrol   |
|                   | <ul><li>instrumentation involved in them.</li><li>6. Classify hazardous areas in the industry.</li></ul>                                                                                                                                                                                                                                                                                                                                                                              |         |

## **Details of Syllabus:**

**Prerequisite:** Temperature, flow, pressure sensors, fundamentals of process instrumentation and control, control schemes like feedback, feedforward, cascade, split range, selective etc., basics of unit operations.

| Module | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hrs | CO<br>Mapping |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | <ul> <li>Control System for Heat transfer unit operations:<br/>Introduction to unit operations and processes, concept of heat transfers and energy balance, heat transfer coefficient.</li> <li>Heat exchanger control: classification as per fluid flow arrangement and construction, feedback, feed-forward, bypass control schemes, fouling in heat exchangers.</li> <li>Boiler control: Types, working and operation of boilers, Terms related-Shrink and swell effect and excess oxygen, boiler efficiency, boiler performance terminology. Boiler controls- Drum level control- Single, two and three elements, and Combustion Control-Type 1, 2, 3 and 4, steam temperature control, boiler pressure control, furnace draft control, Burner Management System.</li> <li>Evaporator control: Evaporator terminologies, Types of Evaporator, mathematical model for evaporator, control systems for Evaporator – feedback, cascade, feed forward and selective control.</li> <li>Furnace control: Start- up heaters, fired re-boilers, process and safety controls.</li> </ul> | 13  | CO1           |
| 2      | <ul> <li>Control System for Heat and mass transfer unit operations:</li> <li>Distillation column: Basic principle, Distillation equipment and its accessories. Batch and continuous distillation, Binary product distillation, multi-product distillation, side-draw product distillation column. Distillation column control strategies- Top and bottom product composition controls, Using chromatograph, Pressure controls, Vacuum distillation, Vapors recompression and pressure control, Feed controls- Column feed controls and Feed temperature control, economizer.</li> <li>Dryer control: Process of drying, types of dryer- Tray, Vacuum dryer, fluidized bed, Double drum dryer, rotary, turbo and spray, and their control strategies.</li> <li>Crystallizers: Process of crystallization, Super-saturation methods, types of crystallizer, control of evaporating crystallizer, cooling crystallizers, vacuum crystallizers.</li> <li>Reactor control: Reactor characteristics, runaway reaction, various schemes of temperature control of reactors.</li> </ul>     | 12  | CO2           |
| 3      | Miscellaneous process equipment:<br>Compressor- Classification, Phenomenon of Surge for centrifugal<br>compressors, Methods of surge control for compressors.<br>Gas turbine- Introduction, gas turbine layouts, closed cycle gas turbine,<br>Engine controls.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05  | CO3           |
|        | <b>Continuous Process Industries:</b><br><b>Refinery Industry:</b> Process flow diagram separation Treatment-Hydro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |               |

|   | Iron and steel Industry: Process flow diagram, Sensors and Control schemes.                                                                                                                                                      |    |     |  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 5 | Batch Process Industries:Food processing: Milk pasteurization.Pharmaceutical industries- Penicillin-G production, sensors and controlschemes.                                                                                    | 07 | CO5 |  |
| 6 | Safety in Instrumentation control systems:<br>Area and material classification as per IEC and NEC standard, techniques<br>used to reduce explosion hazards, intrinsic safety, and installation of<br>intrinsically safe systems. | 04 | CO6 |  |

### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

### **Text Books:**

- 1. W. L. McCabe and Julian Smith, "Unit operation and chemical engineering", Tata McGraw Hill, Sixth edition, 2001.
- 2. Bela G. Liptak, "Instrument engineers handbook Process control", Chilton book company, third edition, 1995.
- 3. Bela G. Liptak, "Instrumentation in the processing industries", Chilton book company-first edition, 1973.

### **Reference Books:**

- 1. Douglas M. Considine, "Process industrial instruments and controls handbook", McGraw Hill- 4th edition, 1993.
- 2. George T. Austin, "Shreve's chemical process industries", Mc-GrawHill- fifth edition, 1984.
- 3. George Stephenopoulos, "Chemical process control", PHI-1999.
- David Lindsey, "Power Plant control and instrumentation control of boilers HRSG", Institution of Engineering and Technology,

### Publishing Limited and CRC Press LLC, 2007.

| Sub code | Subject Name                  | Teaching S | cheme (H | lrs) | Cı     | redits As | edits Ass <mark>ign</mark> ed<br>Pract. Tut. Tot |       |  |
|----------|-------------------------------|------------|----------|------|--------|-----------|--------------------------------------------------|-------|--|
| Sub coue | Subject Mame                  | Theory     | Pract    | Tut. | Theory | Pract.    | Tut.                                             | Total |  |
| ISC702   | Biomedical<br>Instrumentation | 4          | -        | -    | 4      |           | -                                                | 4     |  |

|          |                               |                     | Examination Scheme      |     |            |              |          |          |       |
|----------|-------------------------------|---------------------|-------------------------|-----|------------|--------------|----------|----------|-------|
|          |                               | Theory (out of 100) |                         |     |            |              |          |          |       |
| Sub code | Subject Name                  |                     | al Assess<br>out of 20) |     | End<br>sem | Term<br>Work | and oral | Ora<br>1 | Total |
|          |                               | Test 1              | Test 2                  | Avg | Exam       |              | 01 al    |          |       |
| ISC702   | Biomedical<br>Instrumentation | 20                  | 20                      | 20  | 80         | ·            | 0        | -        | 100   |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credits                                         |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| ISC702            | Biomedical Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                               |
| Course Objectives | <ul> <li>To make students understand the Identification, classification, and principle of various Biomedical Instruments used for Biomeasurement</li> <li>To make students understand the application of the various biomedical in in diagnosis, therapeutic and imaging fields.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    | o-potential                                     |
| Course Outcomes   | <ol> <li>The students will be able</li> <li>To identify various Bio-potential with their specifications and perform measurements.</li> <li>To discuss various Physiological systems and to identify their parameter related measurements.</li> <li>To explain the principle and working of various cardiovascular parametheir measurement techniques with applications.</li> <li>To relate between the different life support instruments and to describe applications.</li> <li>To distinguish between the various medical imaging techniques based principles and concepts involved in them.</li> <li>To describe the significance of electrical safety in biomedical measurement</li> </ol> | eters and<br>neters and<br>we their<br>I on the |

|   | Module | Topics<br>Bio-Potentials and their Measurement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hrs. | CO<br>Mapping | 2 |
|---|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|---|
|   | 1      | Structure of Cell, Origin of Bio-potential, electrical activity of cell and<br>its characteristics and specifications. Measurement of RMP and AP.<br>Electrode-Electrolyte interface and types of bio-potential electrodes.                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06   | CO1           |   |
|   | 2      | <ul> <li>Physiological Systems and Related Measurement: <ul> <li>Respiratory system- Physiology of respiration and measurements of respiratory related parameters.</li> <li>Nervous system- Nerve cell, neuronal communication, nervemuscle physiology, CNS, PNS. Generation of EEG and study of its characteristics. Normal and abnormal EEG, evoked potential and epilepsy.</li> <li>Muscular system- Generation of EMG signal, specification and measurement.</li> <li>Cardiovascular system- Structure of Heart, Electrical and Mechanical activity of Heart, ECG measurements and Cardiac arrhythmias.</li> <li>Design of ECG amplifier.</li> </ul> </li> </ul> | 12   | CO2           |   |
|   | 3      | <ul> <li>Cardiovascular Measurement:</li> <li>Blood Pressure- Direct and Indirect types.</li> <li>Blood Flow- Electromagnetic and Ultrasonic types.</li> <li>Blood Volume- Types of Plethysmography. (Impedance, Capacitive and Photoelectric)</li> <li>Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type.</li> <li>Heart sound measurement.</li> </ul>                                                                                                                                                                                                                                                                                           | 08   | CO3           |   |
|   | 4      | <ul> <li>Life support Instruments:</li> <li>Patient monitoring system - Bedside monitors, Central nurse station</li> <li>Pacemaker- Types of Pacemaker, mode of pacing and its application.</li> <li>Defibrillator- AC and DC Defibrillators and their application.</li> <li>Heart Lung machine and its application during surgery.</li> <li>Hemodialysis system and the precautions to be taken during dialysis.</li> <li>Ventilator system and its important parameters for monitoring</li> </ul>                                                                                                                                                                  | 10   | CO4           |   |
| 4 | 5      | <ul> <li>Imaging Techniques: *</li> <li>X-Ray machine and its application. CT Scan- CT Number,<br/>Block Diagram, scanning system and application.</li> <li>Ultrasound Imaging- Modes of scanning and their application.</li> <li>MRI- Concepts and image generation, block diagram and its<br/>application.</li> <li>Introduction to Functional imaging.</li> </ul>                                                                                                                                                                                                                                                                                                 | 10   | CO5           |   |
|   | 6      | <b>Significance of Electrical Safety:</b><br>Physiological effects of electrical current, Shock Hazards from electrical equipment and methods of accident prevention.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02   | CO6           |   |

### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **End Semester Examination:**

1. Question paper will comprise of 6 questions, each carrying 20 Marks.

2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

### **Text Books:**

- Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2<sup>nd</sup> Edition, Pearson Education, 1980.
- 2) John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4<sup>th</sup> edition, 2010.
- 3) R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004

### **Reference Books:**

- 1) Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4<sup>th</sup> edition, 2001.
- 3) John E Hall, Gyton's Medical Physiology, 12th edition, 2011
- 4) L. E. Baker L. A. Geddes, "Principles of Applied Biomedical Instrumentation", John Wiley and Sons, 3rd Edition, 1991.

| Subject<br>code | Subject<br>Name | Teaching | Teaching scheme |      |        | Credit assigned |      |       |  |  |
|-----------------|-----------------|----------|-----------------|------|--------|-----------------|------|-------|--|--|
| ISC703          | Industrial      | Theory   | Pract.          | Tut. | Theory | Pract.          | Tut. | Total |  |  |
|                 | Automation      | 4        | -               | -    | 4      |                 | -    | 4     |  |  |

| <b>ISC703</b> | Industrial               | Theory   | Pract    | . Tut.  | Theor | y Pra | ct. Tu | it. 🦵 | Fotal |   |
|---------------|--------------------------|----------|----------|---------|-------|-------|--------|-------|-------|---|
|               | Automation               | 4        | -        | -       | 4     |       |        | -     | 4     |   |
|               |                          |          |          |         |       |       |        |       |       |   |
| Sub           | Subject                  | Examina  | tion sch | eme     |       |       |        |       |       |   |
| Code          | Name                     | Theory ( | 100)     | Total   |       |       |        |       |       |   |
|               |                          | Internal | Assessm  | ent(20) | End   | work  | and    |       | C     |   |
|               |                          |          |          |         | sem   |       | Oral   |       |       |   |
|               |                          |          | Test A   | Avg.    | Exam  | 3     | 2      | C     | •     |   |
| ISC703        | Industrial<br>Automation | 20       | 20 2     | 20      | 80    | 2     | -      |       | 100   |   |
|               | · · · · · ·              |          | ·        |         | 5     |       | 0      |       |       | - |

| Subject Code     | Subject Name cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | edits                                         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ISC703           | Industrial Automation 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |
| Course objective | <ul> <li>To impart knowledge about the fundamentals of automativations automation systems used in industry.</li> <li>To impart the knowledge about the architecture, workin applications of PLC, DCS and SCADA</li> <li>To make the students understand the requirements of lastron ented Systems (SIS)</li> </ul>                                                                                                                                                                                                                                                                                     | ng an                                         |
| Course Outcome   | <ul> <li>Instrumented System (SIS).</li> <li>The students will be able to <ol> <li>Describe automation, need, importance and application industry.</li> <li>Identify components of PLC, and develop PLC ladder instructions of PLC and design PLC based application proper selection and sizing criteria</li> <li>Explain evolution and architecture of DCS, hierarchical of in DCS, programming DCS through Function Block D (FBD) method.</li> <li>Describe SCADA architecture, communication in SCAE develop any application based on SCADA along with using SCADA software.</li> </ol> </li> </ul> | r usin<br>ion b<br>contro<br>viagrar<br>DA an |
|                  | <ol> <li>5. Explain database and alarm management system</li> <li>6. Recognize the need of SIS and describe risk reduction me</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the de                                        |

### **Details of Syllabus:**

| Prereauis | ite: Knowledge of Digital Electronics, Process Instrumentation and Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trol 🦱 |               |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A      |               |  |
| Module    | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs.   | CO<br>Mapping |  |
| 1         | Automation Fundamentals<br>Automation, Need for automation and its importance, Types of<br>automation, Automation applications, Expectations of automation.<br>Process and factory automation.<br>Types of plant and control – categories in industry, open loop and<br>closed loop control functions, continuous processes, discrete<br>processes, and mixed processes.<br>Automation hierarchy – large control system hierarchy, data quantity<br>& quality and hierarchical control.<br>Control system architecture – evolution and current trends,                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04     | COI           |  |
| 2         | <ul> <li>comparison of different architectures.</li> <li>Programmable Logic Controller</li> <li>Hardware</li> <li>Evolution of PLC, Definition, functions of PLC, Advantages, Architecture, working of PLC, Scan time, Types &amp; Specifications. Safety PLC</li> <li>DI-DO-AI-AO examples and ratings, I/O modules, local and remote I/O expansion, special purpose modules, wiring diagrams of different I/O modules, communication modules, Memory &amp; addressing- memory organization (system memory and application memory), I/O addressing, hardware to software interface.</li> <li>Software</li> <li>Development of Relay Logic Ladder Diagram, introduction to PLC Programming languages, LD programming-basic LD instructions, PLC Timers and Counters: Types and examples, data transfer &amp; program control instructions, advanced PLC instructions, PID Control using PLC.</li> <li>Case study:</li> <li>PLC selection and configuration for any one process applications.</li> </ul> | 14     | CO2           |  |
| 3         | <ul> <li>Distributed Control System (DCS)</li> <li>Introduction to DCS. Evolution of DCS, DCS flow sheet symbols, architecture of DCS. Controller, Input and output modules, Communication module, data highway, local I/O bus, Workstations, Specifications of DCS. Introduction of Hierarchical control of memory: Task listing, Higher and Lower computer level task.</li> <li>Supervisory computer tasks, DCS configuration, Supervisory computer functions, Control techniques, Supervisory Control Algorithm. DCS &amp; Supervisory computer displays, advanced control Strategies, computer interface with DCS.</li> <li>DCS System integration with PLCs computer: HMI, Man machine interface sequencing, Supervisory control, and integration with PLC, personal computers and direct I/O, serial linkages, network linkages, link between networks.</li> <li>Introduction to DCS Programming, Function Block Diagram method</li> </ul>                                                        | 12     | CO3           |  |

| 4 | Supervisory Control and Data Acquisition (SCADA)                    | 10 | CO4        |  |
|---|---------------------------------------------------------------------|----|------------|--|
|   | SCADA introduction, brief history of SCADA, elements of             |    |            |  |
|   | SCADA.                                                              |    |            |  |
|   | Features of SCADA, MTU- functions of MTU, RTU- Functions of         |    |            |  |
|   | RTU, Protocol Detail, Specifications of SCADA                       |    |            |  |
|   | SCADA as a real time system Communications in SCADA- types &        |    |            |  |
|   | methods used, components, Protocol structure and Mediums used       |    |            |  |
|   | for communications.                                                 |    |            |  |
|   | SCADA Development for any one typical application.                  |    |            |  |
|   | Programming for GUI development using SCADA software.               |    |            |  |
| 5 | Database and Alarm Management, MES, ERP                             | 04 | <b>CO5</b> |  |
|   | Database management, Philosophies of Alarm Management, Alarm        |    | •          |  |
|   | reporting, types of alarms generated and acceptance of alarms.      |    |            |  |
|   | Manufacturing Execution System, Enterprise Resource Planning,       |    |            |  |
|   | Integration with enterprise system.                                 |    |            |  |
| 6 | Safety Instrumented System (SIS)                                    | 04 | CO6        |  |
|   | Need for safety instrumentation- risk and risk reduction methods,   |    |            |  |
|   | hazards analysis. Process control systems and SIS.                  |    |            |  |
|   | Safety Integrity Levels (SIL) and availability. Introduction to the |    |            |  |
|   | international functional safety standard IEC 61508.                 |    |            |  |

### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

### **Text Books:**

- 1. Samuel M. Herb, "Understanding Distributed Processor Systems for Control", ISA Publication, 1999.
- 2. Thomas Hughes, "Programmable Logic Controller", ISA Publication, 2001.
- 3. Stuart A. Boyer, "SCADA supervisory control and data acquisition", ISA Publication, 2010.
- 4. Gruhn and Cheddie, "Safety Shutdown Systems" ISA, 1998,

### **Reference Books:**

- 1. Poppovik Bhatkar, "Distributed Computer Control for Industrial Automation", Dekkar Publication, 1990.
- 2. S.K. Singh, "Computer Aided Process Control", Prentice Hall of India, 2004.
- 3. Krishna Kant, "Computer Based Process Control", Prentice Hall of India

- 5. Gary Dunning, "Introduction to Programmable Logic controller", Thomas Learning, edition, 2001.
- 6. John. W. Webb, Ronald A Reis, "Programmable Logic Controllers Principles and Applications", 3<sup>rd</sup> edition, Prentice Hall Inc., New Jersey, 1995.
- Bela G. Liptak "Instrument engineer's handbook- Process control" Chilton book company-3<sup>rd</sup> edition.
- 8. D.J. Smith & K.G.L. Simpson, "Functional Safety: A Straightforward Guide to IEC61508 and Related Standards", -Butterworth-Heinemann Publications.

| Subject<br>code | Subject Name       | Teaching scheme Credit assigned |        |      |        |        |      |       |
|-----------------|--------------------|---------------------------------|--------|------|--------|--------|------|-------|
| IGDI 07021      | Imaga Dua accesing | Theory                          | Pract. | Tut. | Theory | Pract. | Tut. | Total |
| ISDLO7031       | Image Processing   | 4                               | -      | -    | 4      | -      | -    | 4     |

|           |                     |       |                      |                 | Examinatio      | n scheme     | e           |      |       |
|-----------|---------------------|-------|----------------------|-----------------|-----------------|--------------|-------------|------|-------|
| Sub Code  | Subject             |       | Theory (             | ry (out of 100) |                 |              | Pract.      |      |       |
|           | Subject<br>Name     |       | Internal<br>essment( | 20)             | End Sem<br>Exam | Term<br>work | and<br>Oral | Oral | Total |
|           |                     | Test1 | Test2                | Avg.            | Exam            | S            | Orai        |      |       |
| ISDLO7031 | Image<br>Processing | 20    | 20                   | 20              | 80              | -            | 50          | 5    | 100   |
|           |                     |       |                      |                 |                 |              |             |      |       |

| Subject Code             | Subject Name                                                           | Credits     |  |  |  |  |  |
|--------------------------|------------------------------------------------------------------------|-------------|--|--|--|--|--|
| , v                      | <b>v</b>                                                               |             |  |  |  |  |  |
| ISDLO7031                | Image Processing                                                       | 4           |  |  |  |  |  |
|                          | 1. To explain basic principles of Image processing.                    |             |  |  |  |  |  |
|                          | 2. To apply time and frequency domain transformation method on 2       | 2D Images   |  |  |  |  |  |
|                          | 3. To study different Image enhancement techniques in spatial and      | l frequency |  |  |  |  |  |
|                          | domain.                                                                |             |  |  |  |  |  |
| <b>Course Objectives</b> | 4. To study Image restoration techniques to reduce the noise a         | nd recover  |  |  |  |  |  |
|                          | original Image.                                                        |             |  |  |  |  |  |
|                          | 5. To study Lossy and lossless Image compression by different methods. |             |  |  |  |  |  |
|                          | 6. To study Image morphology and segmentation techniques to            | o represent |  |  |  |  |  |
|                          | images into more meaningful and easier to analyze.                     |             |  |  |  |  |  |
|                          | Students will be able to -                                             |             |  |  |  |  |  |
|                          | 1. Describe general terminology of Image processing.                   |             |  |  |  |  |  |
|                          | 2. Examine Images and their analysis by various transformation tec     | hniques.    |  |  |  |  |  |
|                          | 3. Apply basic Image enhancement operations on Images.                 |             |  |  |  |  |  |
| Course Outcomes          | 4. Evaluate mathematical tools such as Image morphology a              | and Image   |  |  |  |  |  |
|                          | segmentation to extract various Image components.                      |             |  |  |  |  |  |
|                          | 5. Discuss Image compression methods                                   |             |  |  |  |  |  |
|                          | 6. Discuss Image degradation and restoration model.                    |             |  |  |  |  |  |
|                          |                                                                        |             |  |  |  |  |  |

### **Details of Syllabus:**

**Prerequisite:** Knowledge of Fundamentals of Engineering Mathematics, Basic Operation with Matrices, Signals and Systems and Digital Signal Processing.

| Module | Contents                                                           | Hrs | CO      |
|--------|--------------------------------------------------------------------|-----|---------|
|        |                                                                    |     | mapping |
| 1      | Introduction to Image processing: -Concept of Digital Image,       | 08  | CO1     |
|        | Fundamental steps in Image processing, Components of Image         |     |         |
|        | processing systems, Elements of visual perception, Image formation |     |         |
|        | model, Sampling and Quantization of Image, Relationships between   |     |         |
|        | pixels like neighbours of pixel, Adjacency, Connectivity, Distance |     |         |

| r |                                                                           | 1  | [   | 1 |
|---|---------------------------------------------------------------------------|----|-----|---|
| 2 | Image Transformation: -Orthogonal and Orthonormal Function,               | 07 | CO2 |   |
|   | 2D Discrete Fourier transform and its properties, Fast Fourier            |    |     |   |
|   | transform of Image, Discrete Cosine and Sine transform (2D),              |    |     |   |
|   | Walsh-Hadamard transform, Haar transform, Slant transform,                |    |     |   |
|   | Karhunen-Loeve transform, Introduction to Wavelet transform and           |    | •   |   |
|   | its application.                                                          |    |     |   |
| 3 | Image Enhancement: -Image enhancement in spatial domain,                  | 10 | CO3 |   |
|   | Basic gray level transformation like Image Negatives, Log                 |    |     |   |
|   | transformations, Power Law transformations, Contrast stretching,          |    |     |   |
|   | Gray level and Bit plane slicing, Histogram processing,                   |    |     |   |
|   | Enhancement using Arithmetic/Logic operation, Smoothing spatial           |    |     |   |
|   | filters, Sharpening spatial filters, Image enhancement in frequency       |    | •   |   |
|   | domain, Smoothing frequency domain filters, Sharpening frequency          |    |     |   |
|   | domain filters, Homomorphic filtering.                                    |    |     |   |
| 4 | Morphological Image Processing: Logic operations of Binary                | 10 | CO4 |   |
|   | Images, Dilation and Erosion, Opening and Closing, Hit or Miss            |    |     |   |
|   | transformation, Boundary extraction, Region filling, Extraction of        |    |     |   |
|   | connected component, Thinning, Thickening, Skeletons.                     |    |     |   |
|   | Image Segmentation: Point, Line and Edge detection, Edge linking          |    |     |   |
|   | and boundary detection (Hough Transform), Thresholding, Region            |    |     |   |
|   | based segmentation.                                                       |    |     |   |
|   | <b>Image Registration</b> : Introduction, Geometric transformation, Plane |    |     |   |
|   | to plane transformation, Image Mapping models, Mutual                     |    |     |   |
|   | Information, Entropy, Registration using MI, Introduction to Stereo       |    |     |   |
|   | Imaging                                                                   |    |     |   |
| 5 | Image Compression: -Need of Image compression, Data                       | 08 | CO5 | 1 |
| 5 | redundancy, Image compression model, Difference between Lossy             | 00 | 005 |   |
|   | and Lossless compression, Image compression technique(Huffman,            |    |     |   |
|   | Arithmetic, Run length, LZW coding),Predictive                            |    |     |   |
|   | coding(DPCM), JPEG and MPEG compression standard.                         |    |     |   |
| 6 | <b>Image Restoration</b> : -Image degradation/Restoration model, Noise    | 05 | CO6 |   |
| 0 | models, Probability density function of important noises (Gaussian,       | 05 | 000 |   |
|   |                                                                           |    |     |   |
|   | Rayleigh, Gamma, Exponential, Uniform, Salt and Pepper),                  |    |     |   |
|   | Restoration in presence of noise by spatial filtering (Mean, Median,      |    |     |   |
|   | Midpoint filter), Periodic noise reduction in frequency domain            |    |     |   |
|   | filtering (Band reject, Band pass, Notch filter), Point spread            |    |     |   |
|   | function, Inverse filtering, Weiner filtering.                            |    |     | J |
|   |                                                                           |    |     |   |

### Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective
- . . . . . . . .

### **Text Books.**

- 1. Richard E. Woods, Rafael C. Gonzalez, "Digital Image Processing", Pearson, 3<sup>rd</sup> edition, 2012.
- 2. Jain A.K, "Fundamentals of Digital Image Processing", Pearson, 1<sup>st</sup> edition, 2015.
- 3. B. Chanda, D. Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2<sup>nd</sup> edition, 2011.

### **Reference Books**

- 1.M. Sonka, Hlavac, "Image Processing, Analysis, and Machine Vision" Cengage,4<sup>th</sup> edition, 2014.
- 2. Tamal Bose, "Digital Signal and Image Processing", Wiley, 1st edition, 2003.
- 3. William K. Pratt, "Digital Image Processing", Wiley, 4<sup>th</sup> edition, 2007.
- 4. Jayaraman , Veerakumar, Esakkirajan, "Digital Image Processing", McGraw Hill, 1<sup>st</sup> edition, 2009.

| Subject<br>code | Subject Name           | Teaching scheme |             |           | Credit assigned |              |           |            |  |
|-----------------|------------------------|-----------------|-------------|-----------|-----------------|--------------|-----------|------------|--|
| ISDLO7032       | Digital Control System | Theory<br>4     | Pract.<br>- | Tut.<br>- | Theory<br>4     | Pract.       | Tut.<br>- | Total<br>4 |  |
|                 |                        |                 |             |           |                 | $\mathbf{O}$ | •         | C          |  |

| Sub Code  |                        | Examination scheme |           |          |              |      |        |      |       |  |  |  |
|-----------|------------------------|--------------------|-----------|----------|--------------|------|--------|------|-------|--|--|--|
|           | Subject Name           | r                  | Гheory (  | out of 1 | .00)         | Town | Pract. |      |       |  |  |  |
|           |                        | Intern             | al Assess | ment     | End Sem Work |      | and    | Oral | Total |  |  |  |
|           |                        | Test1              | Test2     | Avg.     | Exam         | WUIK | Oral   |      |       |  |  |  |
| ISDLO7032 | <b>Digital Control</b> | 20                 | 20        | 20       | 80           | -    |        |      | 100   |  |  |  |
| ISDL07032 | System                 | 20                 | 20        | 20       | 00           |      |        |      | 100   |  |  |  |

| Subject Code     | Subject Name                                                             | Credits |
|------------------|--------------------------------------------------------------------------|---------|
| ISDLO7032        | Digital Control System                                                   | 4       |
| Course Objective | 1. To equip the students with the basic knowledge of digital systems     |         |
|                  | 2. To obtain the canonical forms of digital control systems              |         |
|                  | 3. To test the stability and steady state performance of digital control |         |
|                  | system.                                                                  |         |
|                  | 4. To design the controller and observer for digital control systems.    |         |
|                  |                                                                          |         |
| Course Outcome   | Students will be able to                                                 |         |
|                  | 1. Understand the advantages and examples of digital control systems.    |         |
|                  | 2. Understand the basics of Discretization.                              |         |
|                  | 3. Represent digital control system as pulse transfer function.          |         |
|                  | 4. Determine stability, and steady-state error of discrete time systems. |         |
|                  | 5. Represent given system in different canonical forms.                  |         |
|                  | 6. Design controller and observer with state space approach.             |         |

## Details of Syllabus:

Prerequisite: Knowledge of Linear algebra, Fourier Series, Matrix Algebra, and Nyquist stability criterion.

| Module | Contents                                                                      | Hr | CO  |
|--------|-------------------------------------------------------------------------------|----|-----|
|        |                                                                               | S  |     |
| 1      | Introduction                                                                  | 10 | CO1 |
|        | Block diagram of Digital Control System, Advantages & limitations of Digital  |    |     |
|        | Control System, comparison of continuous data & discrete data control         |    |     |
|        | system, Examples of digital control system, data conversion and quantization, |    |     |
|        | sampling period considerations, sampling as impulse modulation, sampled       |    |     |
|        | spectra &aliasing, Reconstruction of analog signals, zero order hold, first   |    |     |
|        | order hold.                                                                   |    |     |
| 2      | Principles of discretization- impulse invariance, finite difference           | 06 | CO2 |
|        | approximation of derivatives, rectangular rules for integration, Bilinear     |    |     |
|        | transformation, Mapping between s-plane and z-plane, Discrete PID controller. |    |     |
| 3      | Representation of digital control system                                      | 06 | CO3 |
|        | Linear difference equations, pulse transfer function, input output model,     |    |     |
|        | examples of first order continuous and discrete time systems, Signal flow     |    |     |
|        | graph applied to digital control systems.                                     |    |     |
| 4      | Stability of digital control system in z-domain and Time domain analysis      | 08 | CO4 |

|   | Effect of sampling period on transient response characteristics.             |    |     |
|---|------------------------------------------------------------------------------|----|-----|
| 5 | State space analysis                                                         | 08 | CO5 |
|   | Discrete time state equations in standard canonical forms, similarity        |    |     |
|   | transformation, state transition matrix, solution of discrete time state     |    |     |
|   | equation, Discretization of continuous state space model & its solution.     |    |     |
| 6 | Pole placement and observer designs                                          | 10 | CO6 |
|   | Concept of reachability, Controllability, Constructability & Observability,  |    |     |
|   | Design of controller via Pole placement method, dead beat controller design, |    |     |
|   | concept of duality, state observer design.                                   |    |     |

**Internal Assessment:** 

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

### **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

### Text Books.

- 1. M. Gopal, "Digital Contol and State Variable Methods", Tata McGraw Hill, 2nd Edition, March 2003.
- 2. K. Ogata, "Discrete Time Control Systems", Pearson Education Inc., 1995.
- 3. B.C. Kuo, "Digital Control Systems", Saunders College Publishing, 1992.

## **Reference Books**

- 1. Richard J. Vaccaro, "Digital Control", McGraw Hill Inc., 1995.
- 2. Ashish Tewari, "Modern Control System Design with MATLAB", John Wiley, Feb. 2002.
- 3. Joe H. Chow, Dean K. Frederick, "Discrete Time Control Problems using MATLAB", Thomson Learning, 1st Edition, 2003.
- 4. Eronini Umez, "System Dynamics and Control", Thomson Learning, 1999.
- 5. Franklin Powel, "Digital Control of Dynamic Systems", Pearson Education, 3rd Edition, 2003.
- 6. Digital Control Systems vol. I & II Isermann, Narosa publications

| Subject<br>Code | Subject Name                           | Teaching Scheme |             |           | Credits Assigned |             |      |                   |  |
|-----------------|----------------------------------------|-----------------|-------------|-----------|------------------|-------------|------|-------------------|--|
| ISDLO7033       | Advanced<br>Microcontroller<br>Systems | Theory<br>4     | Pract.<br>- | Tut.<br>- | Theory<br>4      | Pract.<br>- | Tut. | <b>Total</b><br>4 |  |

| Subject<br>Code | Subject Name    | Teaching Scheme |            | Credit |        |       |       |          |       |  |
|-----------------|-----------------|-----------------|------------|--------|--------|-------|-------|----------|-------|--|
| ISDLO7033       | Advanced        | Theory          | Pract.     | Tut.   | Theory | y Pra | ct.   | Tut.     | Total |  |
|                 | Microcontroller | 4               | -          | -      | 4      |       | -     |          | 4     |  |
|                 | Systems         |                 |            |        |        |       |       |          |       |  |
|                 |                 |                 |            |        |        |       |       |          | C     |  |
| Subject         | Subject Name    | Examina         | ation scho | eme    |        |       |       |          |       |  |
| Code            |                 | Theory          | Marks(1    |        | Term   | Pract | t. Or | al Total |       |  |
|                 |                 | Internal        |            |        | End    | work  | and   |          |       |  |
|                 |                 | Assessm         | ent(20)    |        | Sem    | 5     | Oral  |          |       |  |
|                 |                 | Test1           | Test2      | Avg.   | Exam   |       |       | 5        |       |  |
| ISDLO7033       | Advanced        | 20              | 20         | 20     | 80     | -     | -     |          | 100   |  |
|                 | Microcontroller |                 |            |        |        |       |       |          |       |  |
|                 | Systems         |                 |            |        |        |       |       | -        |       |  |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | credits                                                                                                               |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ISDLO7033         | Advanced Microcontroller Systems       4         1. To explain the fundamentals of PIC 18F Microcontroller and working of the system.       2. To discuss and explain the integrated hardware of the PIC 18F Microcontroller         3. To illustrate various programming tools and development of software using assembly and higher level language.       4. To examine and design, interfacing of PIC 18F Microcontroller with different peripheral devices such as LCD, keyboard, ADC, DAC etc.         5. To design applications using learned concepts of hardware, software and interfacing.       6. To describe the working of RTOS and related tasks                                                                                                                                                              |                                                                                                                       |  |  |  |  |  |
| Course objectives |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       |  |  |  |  |  |
| Course Outcomes   | <ol> <li>The students will be able to:         <ol> <li>Describe working of PIC 18F Microcontroller Arch<br/>Programming model.</li> <li>Discuss programming tools and construct software<br/>assembly or 'C' language.</li> <li>Illustrate the knowledge of operation of integrate<br/>components such as (CCP) module, ECCP mod<br/>Synchronous Serial Port (MSSP) Module, Enhance<br/>Synchronous, Asynchronous Receiver Transmitter<br/>Analog-To-Digital Converter (A/D) Module.</li> <li>Investigate and construct circuits for interfacing o<br/>components with PIC 18F Microcontroller.</li> <li>Design and develop sophisticated application based<br/>Microcontroller such as Temperature controller, PID cor<br/>etc.</li> <li>Describe the principle of working of RTOS and related ta:</li> </ol> </li> </ol> | programs in<br>ed hardware<br>ule. Master<br>id Universal<br>(EUSART),<br>f peripheral<br>on PIC 18F<br>htroller, RTC |  |  |  |  |  |

# **Details of Syllabus:**

| Prerequis | ite: Knowledge of digital electronics, microcontrollers, programming skills                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | $\frown$      |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|--|
| Module    | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hrs | CO<br>Mapping |  |
| 1         | Introduction to PIC 18F Microcontroller<br>PIC 18F Microcontroller architecture, Hardware PIC 18F<br>Microcontroller family, PIC18F architecture, features PIC18F4520,<br>Block diagram, Oscillator configuration, power saving modes.<br>Memory model, EEPROM and RAM, Program Memory. Hardware<br>multiplier, Interrupt structure.                                                                                                                                                                           | 06  | CO1           |  |
| 2         | <b>PIC 18F Software</b><br>PIC18F addressing modes, Instruction set, Instruction format, Integrated<br>Development Environment (IDE), Assembling, Debugging, and<br>Executing a program using MPLAB IDE in assembly and embedded C.<br>Data copy operation, Arithmetic operation, Branch and Skip operation,<br>Logic operations, bit Operation, Stack and Subroutine, Code conversion<br>programs and Software Design, Programming practice using assembly &<br>C compiler.                                   | 10  | CO2           |  |
| 3         | Integrated peripherals of PIC 18F Microcontroller<br>I/O ports, Timer, capture/compare/PWM (CCP) module, ECCP module.<br>Master Synchronous Serial Port (MSSP) Module, Enhanced Universal<br>Synchronous, Asynchronous Receiver Transmitter (EUSART), Analog-<br>To-Digital Converter (A/D) Module, Comparator module.                                                                                                                                                                                         | 08  | CO3           |  |
| 4         | <b>PIC 18F Interfacing</b><br>Interfacing to LCD, 7 segment display, Keyboard, ADC, DAC, relay, DC motor, Stepper Motor.                                                                                                                                                                                                                                                                                                                                                                                       | 08  | CO4           |  |
| 5         | Case Studies<br>PWM Generation, Digital encoder, PID Controller, Temperature<br>controller, RTC, Speed Control of DC motors and similar system design                                                                                                                                                                                                                                                                                                                                                          | 08  | CO5           |  |
| 6         | <ul> <li>Introduction to Real Time Operating System</li> <li>Introduction to RTOS concept. Tasks and task states, task and data, Semaphores and shared data.</li> <li>Multitasking operating systems, Context switching, task tables, and kernels, Task swapping methods (Time slice, Pre-emption, Co-operative multitasking)</li> <li>Scheduler algorithms (Rate monotonic, Deadline monotonic scheduling) Priority inversion, Tasks, threads and processes, Exceptions, Example of any tiny RTOS.</li> </ul> | 08  | CO6           |  |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of

4 to 5 marks will be asked.

- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- 1. Mazidi M.A., PIC 18F Microcontroller & Embedded systems, Pearson Education Second edition.
- 2. Ramesh Gaonkar, Fundamentals of Microcontrollers and application in Embedded system (With PIC 18 Microcontroller family) Penram International Publishing.
- Steve Heath, Embedded Systems Design, Newnes publication, Second edition, ISBN 0 7506
   5546

### **Reference Books:**

- 1. John B. Peatman, Design with PIC Microcontroller, Pearson Education
- Han-way Huang, PIC Microcontroller: An Introduction to Software & Hardware Interfacing, Thomson Delmar Learning, India Edition.
- 3. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-1.
- 4. Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition.
- 5. Rajkamal, Embedded Systems, TMH, Second Edition.

| Subject<br>code | Subject Name | Teaching | Scheme (I | Hrs) | Credits A |        |      |       |
|-----------------|--------------|----------|-----------|------|-----------|--------|------|-------|
| ISDLO           | Mechatronics | Theory   | Pract.    | Tut. | Theory    | Pract. | Tut. | Total |
| 7034            |              | 4        | -         | -    | 4         | -      | -    | 4     |
|                 |              |          |           |      |           |        |      | C     |

|               |              |                                    |           | F        | Examinatio  | on Scheme |                       |      |       |
|---------------|--------------|------------------------------------|-----------|----------|-------------|-----------|-----------------------|------|-------|
| Subject       | Subject Name | Л                                  | Theory(ou | ut of 10 | ))          | .6        | Deve                  |      |       |
| code          |              | Internal Assessment<br>(out of 20) |           |          | End<br>Sem. | Theory    | Pract.<br>And<br>Oral | Oral | Total |
|               |              | Test 1                             | Test 2    | Avg.     | Exam        |           | Ulai                  |      |       |
| ISDLO<br>7034 | Mechatronics | 20                                 | 20        | 20       | 80          |           | 0                     | -    | 100   |
|               |              |                                    |           |          |             |           |                       |      |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                       | Credits                                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| ISDLO7034         | Mechatronics                                                                                                                                                                                                                                                                                                       | 4                                                 |
| Course Objectives | systems.                                                                                                                                                                                                                                                                                                           |                                                   |
| Course Outcomes   | <ol> <li>The students will be able to</li> <li>Describe mechatronics system.</li> <li>Apply the concept of system mod</li> <li>Identify the suitable sensor and a system.</li> <li>Explain feedback and intelligent</li> <li>Learn mechatronics system valid</li> <li>Integrate the components in mecha</li> </ol> | ctuator for a mechatronic<br>controllers<br>ation |

# **Details of Syllabus:**

Prerequisites: Signal conditioning, controllers and signals and systems, communication protocols.

| Module | Contents                                                               | Hrs. | CO<br>Mapping |
|--------|------------------------------------------------------------------------|------|---------------|
|        | Introduction to mechatronics systems:                                  |      | CO1           |
|        | Definition and evolution levels of mechatronics, integrated design     |      |               |
| 1      | issues in mechatronics, key elements of mechatronics, mechatronics     | 06   |               |
|        | design process- modeling and simulation, prototyping, deployment /life |      |               |
|        | cycle, advanced approaches in mechatronics.                            |      |               |
|        | Modeling and Simulation of physical systems:                           |      | CO2           |

|   | translational and rotational systems-sliding block with friction, elevator                                                                  |    |     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
|   | cable system, mass-damper system, automobile suspension system, mechanical lever system, geared elevator system, electromechanical          | C  |     |
|   | coupling- DC motor, fluid systems-three tank liquid system, hydraulic                                                                       |    |     |
|   | actuator and hydraulic pressure regulator.                                                                                                  |    |     |
|   |                                                                                                                                             |    |     |
|   | Hardware components:                                                                                                                        |    | CO3 |
|   | Sensors: motion and position measurement, force, torque and tactile                                                                         |    |     |
|   | sensors, ultrasonic and range sensors, fiber optic sensors, micro                                                                           |    |     |
|   | sensors.                                                                                                                                    | C- |     |
|   | Actuators: Pneumatic and hydraulic-directional and pressure control                                                                         |    |     |
| 3 | valves, cylinders, servo proportional control valves, rotary actuators,                                                                     | 10 |     |
|   | Electrical actuation: A.C and DC motors, stepper motors, mechanical                                                                         |    |     |
|   | switches and solid state switches.                                                                                                          |    |     |
|   | Mechanical Actuation: types of motion, kinematic chain, cams, gears, ratchets and pawl, belt and chain drives, bearings, mechanical aspects |    |     |
|   | of motor selection, piezoelectric actuators, magnetostrictive actuators,                                                                    |    |     |
|   | memory metal actuators, Programmable Logic Controller                                                                                       |    |     |
|   | Intelligent control:                                                                                                                        |    |     |
|   | Automatic control methods, Artificial Neural Network(ANN) -                                                                                 |    | CO4 |
| 4 | Modeling, basic model of neuron, characteristics of ANN, perceptron,                                                                        | 10 |     |
| 4 | learning algorithms, fuzzy logic – propositional logic, membership                                                                          | 10 |     |
|   | function, fuzzy logic and fuzzy rule generation, defuzzification, time                                                                      |    |     |
|   | dependent and temporal fuzzy logic.                                                                                                         |    |     |
|   | Components based modular design and system validation:                                                                                      |    | CO5 |
| 5 | Components based modular design view, system validation, validation                                                                         | 06 |     |
|   | methodology-integrated and design dependence, distributed local                                                                             |    |     |
|   | level, validation schemes, fusion technique                                                                                                 |    |     |
|   | Integration:<br>Advanced actuators, consumer mechatronic products, hydraulic                                                                |    |     |
|   | fingers, surgical equipment, industrial robot, autonomous guided                                                                            |    |     |
| 6 | vehicle, drilling machine, 3D Plotter, Motion Control Systems-Printing                                                                      |    | CO6 |
|   | machines, coil winding machines, machine tools, and robotics, IC, and                                                                       | 06 | 000 |
|   | PCB manufacturing.                                                                                                                          |    |     |

# Theory Examination: 1. Question page Total 4 question

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 question need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

### Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Reference Books:**

- 1. Devdas Shetty and Richard Kolk, "Mechatronics System Design", Thomson Learning, 2<sup>nd</sup> reprint, 2001.
- 2. W. Bolton, "Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering", Pearson Education Ltd, 4<sup>th</sup> edition, 2010.
- 3. Nitaigour Mahalik, "Mechatronics- Principles, Concepts and Applications", Tata McGraw Hill.
- 4. Stamatios V.Kartalopoulos, "Understanding Neural Networks and fuzzy Logic", PHI,3<sup>rd</sup> reprint, 2013.
- 5. Zhijun Li, Shuzhi Sam Ge, "Fundamentals in Modeling and Control of Mobile Manipulators", March 30, 2017, by CRC Press.
- 6. Sergey Edward Lyshevski, "Mechatronics and Control of Electromechanical Systems", May 30, 2017, by CRC Press.
- Bodgan Wilamowski, J. David Irwin, "Control and Mechatronics", October 12, 2017, by CRC Press.
- 8. Takashi Yamaguchi, Mitsuo Hirata, Justin Chee Khiang Pang, "High-Speed Precision Motion Control", March 29, 2017, by CRC Press.
- 9. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, "Mechatronics and the Design of Intelligent Machines and Systems", November 17, 2000, by CRC Press.
- 10. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, "Mechatronics: Fundamentals and Applications", November 17, 2015, by CRC Press.
- 11. Clarence W. de Silva, "Mechatronics: A Foundation Course", June 4, 2010 by CRC Press.
- 12. GENERAL CATALOGUE 2011 Motion & Drives, OMRON.

| Subject | Subject    | Teac   | hing Sch | neme | Credits Assigned |        |      |       |  |
|---------|------------|--------|----------|------|------------------|--------|------|-------|--|
| Code    | Name       |        |          |      |                  |        |      |       |  |
| ISDLO   | Building   | Theory | Pract.   | Tut. | Theory           | Pract. | Tut. | Total |  |
| 7035    | Automation | 4      | -        | -    | 4                | -      |      | 4     |  |

| Subject | Subject    |        | Examination scheme |          |      |      |        |      |       |
|---------|------------|--------|--------------------|----------|------|------|--------|------|-------|
| Code    | Name       |        | Theory             | Marks(10 | 0)   | Term | Pract. | Oral | Total |
|         |            | Intern | •                  |          | End  | work | and    |      |       |
|         |            | Test1  | Test2              | Avg.     | Sem  |      | Oral   |      |       |
|         |            |        |                    | _        | Exam |      |        |      |       |
| ISDLO   | Building   | 20     | 20                 | 20       | 80   |      | -      |      | 100   |
| 7035    | Automation |        |                    |          |      |      |        |      |       |
|         |            |        |                    |          |      |      |        |      |       |
|         |            |        |                    |          |      |      |        |      |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                         | credits  |  |  |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| ISDLO7035         | Building Automation                                                                                                                                                                                                                                                                                                                                                                                  | 4        |  |  |  |  |  |  |
|                   | <ol> <li>To brief students with origin and evolution of<br/>automation.</li> <li>To train them with architecture and operation of BAS.</li> </ol>                                                                                                                                                                                                                                                    | building |  |  |  |  |  |  |
| Course objectives | <ol> <li>Course objectives</li> <li>To train them with architecture and operation of BAS.</li> <li>To facilitate them for designing automation system for intellige building.</li> </ol>                                                                                                                                                                                                             |          |  |  |  |  |  |  |
|                   | 4. Develop technique for preparation of various documents required for design requirement of safety building.                                                                                                                                                                                                                                                                                        |          |  |  |  |  |  |  |
|                   | The students will be able to:                                                                                                                                                                                                                                                                                                                                                                        |          |  |  |  |  |  |  |
| Course Outcomes   | <ol> <li>Explain the concept of intelligent building and BAS.</li> <li>Select the hardware and design of HVAC in building a system.</li> <li>Discuss the concept of energy management system.</li> <li>Design and implement the safety system for building.</li> <li>Design security and video management system for building.</li> <li>Design and integrate the different system in BAS.</li> </ol> |          |  |  |  |  |  |  |

# Details of Syllabus:

Prerequisite: Fundamental of measurement and control, industrial automation, smart buildings.

| Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs | CO<br>Mapping |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | <ul> <li>Introduction to intelligent buildings:</li> <li>Definitions of intelligent building, Intelligent architecture and structure, Facilities management vs. intelligent buildings, Technology systems and evolution of intelligent buildings.</li> <li>Introduction to Building Automation System: Features, Characteristics, Drawbacks of Building Automation system.</li> <li>Various Systems of Building Automation – Building Management System, Energy Management System, Security System, Safety System, Video Management System.</li> </ul> | 06  | CO1           |

| 2 | <b>HVAC system:</b><br>Introduction, HVAC, Sensors & Transducers – Temperature, Pressure,<br>Level, Flow, RH. Meaning of Analog & Digital Signals, Valves and<br>Actuators, Valve & Actuator Selection, Various Controllers, Concept<br>of Controller IOs, Std Signals, Signal Compatibility between<br>Controller & Field Devices. AHU – Concept, Components, Working<br>Principle. AC Plant Room – Concept, Components, Refrigeration<br>Cycle Working Principle, Chiller Sequencing, AC Plant Sequencing,<br>Feedback Control Loops, Heat – Types, Heat Transfer Principles,<br>Measurement of Heat Transfer. Psychrometry –Concept, ASHRAE<br>Psychrometric Chart, Meaning of Various Terms – DBT, WBT, ST,<br>RH, DPT, Sensible & Latent Cooling & Heating, Numericals. Job IO<br>Summary Calculation, Controller Sizing, AI to DI Conversion, Cable<br>Selection, Earthing – Meaning, Importance, Panel Earthing, EMI &<br>Tackling EMI. Logic Examples, CL Programming. | 12 | CO2 | 5 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|
| 3 | Energy Management System:<br>Concept, Energy Meters, Types, Meter Networking, Monitoring<br>Energy Parameters, Analysis of Power Quality – Instantaneous Power,<br>Active Power, Reactive Power, Power Factor, Voltage, Current. Effect<br>of Power Quality on Energy Consumption, Energy Reports, Energy<br>Conservation, Importance of Energy Saving.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 06 | CO3 |   |
| 4 | Safety Systems:<br>Introduction, Fire –Meaning, Fire Development Stages, Fire Sensors<br>& Detectors, Detector Placement, Detectors Required For Various<br>Applications. Fire Extinguishing Principles, Fire Extinguishers & Its<br>Classification. Fire Alarm System – Controllers, Components, Features,<br>Concept of Fire Loop & Fire Devices, 2-Wire & 4-Wire Loops,<br>Working Principle, System Description, Pre-alarm, Alarm, Trouble,<br>Fault, Differences, Cable Selection, Installation Guidelines Best<br>Installation Practices,<br>Logic Example. NFPA and IS2189 Stds, System Programming.                                                                                                                                                                                                                                                                                                                                                                    | 08 | CO4 |   |
| 5 | Security Systems:<br>Introduction, Access Control – Concept, Generic Model, Components,<br>Types, Features, Card Technologies, Protocols, Controllers, Concept<br>of Antipassback, Biometrics, Issues With Biometrics, Cabling, Video<br>Door phone, Intrusion Detection System – Sensors, Working<br>Principle, Access Control System Programming.<br>Video Management:<br>Introduction, CCTV Cameras, CCD Camera Basics, Traditional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 | CO5 |   |

|   | CCTV System, Video Recording, Drawbacks, Digital Video<br>Recording, Features, Functionalities, Digital Vs Analog Recording,<br>Digital Video Management System – Introduction, Features,<br>Advancements & Differences from Earlier Video Techniques,<br>TCP/IP Networking Fundamentals, System Network Load<br>Calculations, Network Design. |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | Integrated Systems:Introduction, Integration of Building06CO6Management System, Energy Management System, Safety System,<br>Security Systems & Video Management, Benefits of Integrated<br>Systems, Challenges, Future Prospects of Integrated Systems.CO6                                                                                     |

# Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

# **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

# **Text Books:**

- 1. Shengwei Wang, Intelligent Buildings and Building Automation, 2009.
- 2. Reinhold A. Carlson Robert A. Di Giandomenico, 'Understanding Building Automation Systems: Direct Digital Control, Energy Management, Life Safety, Security Access Control, Lighting, Building',1st edition (R.S. Means Company Ltd), (1991).

# **Reference Books:**

- 1. Roger W. Haines, "HVAC system Design Handbook", fifth edition.
- 2. National Joint Apprenticeship & Training Committee, Building Automation System Integration With Open Protocols: System Integration With Open Protocols
- 3. John I. Levenhagen and Donald H. Spethmann, HVAC Controls and Systems (Mechanical Engineering), 1992.
- 4. James E.Brumbaugh, "HVAC fundamentals", vol: 1 to 3.

| Course  | Course Name                                             |        | g Scheme<br>et Hours) | Credits Assigned |                 |      |  |
|---------|---------------------------------------------------------|--------|-----------------------|------------------|-----------------|------|--|
| Code    |                                                         | Theory | Tutorial              | Theory           | <b>Tutorial</b> | Tota |  |
| ILO7011 | Product Lifecycle<br>Management<br>(abbreviated as PLM) | 3      | -                     | 3                | <u>)</u>        | 3    |  |

|         |                                                  |                     | I meor             | , I.a | cornar | Incory   | I avoi imi | Iotai  |  |
|---------|--------------------------------------------------|---------------------|--------------------|-------|--------|----------|------------|--------|--|
| ILO7011 | Product Lifecy<br>Managemer<br>(abbreviated as 2 | nt                  | 3                  |       | -      | 3        |            | 3      |  |
|         |                                                  |                     |                    |       |        |          |            | $\sim$ |  |
|         |                                                  |                     | Examination Scheme |       |        |          |            |        |  |
| Course  | Course Name                                      | Theory              |                    |       |        |          |            |        |  |
| code    |                                                  | Internal Assessment |                    |       | End    | Exam     | Term       | Total  |  |
| coue    |                                                  | Test 1              | Test 2             | Avg.  | Sem.   | Duration | N Work     | •10tai |  |
|         |                                                  | I CSU I             | 1 CSt 2            | Avg.  | Exam   | (Hrs.)   |            |        |  |
| ILO7011 | Product Lifecycle                                | 20                  | 20                 | 20    | 80     | 03       |            | 100    |  |
|         | Management                                       | 20                  | 20                 | 20    | - 00   | 03       | -          | 100    |  |
|         |                                                  |                     |                    |       |        |          |            |        |  |

|                    | • To familiarize the students with the need, benefits and components of                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | PLM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Course             | • To acquaint students with Product Data Management & PLM strategies                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Objectives         | • To give insights into new product development program and guidelines                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | for designing and developing a product                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | • To familiarize the students with Virtual Product Development                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Course<br>Outcomes | <ul> <li>Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.</li> <li>Illustrate various approaches and techniques for designing and developing products.</li> <li>Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.</li> <li>Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plan</li> </ul> |
|                    | components, machning and manufacturing plan                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Module | Contents                                                             | Hours |
|--------|----------------------------------------------------------------------|-------|
| 1      | Introduction to Product Lifecycle Management (PLM): Product          | 12    |
|        | Lifecycle Management (PLM), Need for PLM, Product Lifecycle          |       |
|        | Phases, Opportunities of Globalization, Pre-PLM Environment, PLM     |       |
|        | Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM,    |       |
|        | Focus and Application, A PLM Project, Starting the PLM Initiative,   |       |
|        | PLM Applications                                                     |       |
|        | PLM Strategies: Industrial strategies, Strategy elements, its        |       |
|        | identification, selection and implementation, Developing PLM Vision  |       |
|        | and PLM Strategy, Change management for PLM                          |       |
| 2      | Product Design: Product Design and Development Process, Engineering  | 09    |
|        | Design, Organization and Decomposition in Product Design, Typologies |       |
|        | of Design Process Models, Reference Model, Product Design in the     |       |
|        | Context of the Product Development Process, Relation with the        |       |
|        | Development Process Planning Phase, Relation with the Post design    |       |
|        | Planning Phase, Methodological Evolution in Product Design,          |       |
|        | Concurrent Engineering, Characteristic Features of Concurrent        |       |

|   | Engineering, Concurrent Engineering and Life Cycle Approach, New        |    | 1 |
|---|-------------------------------------------------------------------------|----|---|
|   | Product Development (NPD) and Strategies, Product Configuration and     |    |   |
|   | Variant Management, The Design for X System, Objective Properties       |    |   |
|   | and Design for X Tools, Choice of Design for X Tools and Their Use in   |    |   |
|   | the Design Process                                                      |    |   |
| 3 | Product Data Management (PDM):Product and Product Data, PDM             | 06 |   |
|   | systems and importance, Components of PDM, Reason for implementing      |    |   |
|   | a PDM system, financial justification of PDM, barriers to PDM           |    |   |
|   | implementation                                                          |    |   |
| 4 | Virtual Product Development Tools: For components, machines, and        | 06 | 1 |
|   | manufacturing plants, 3D CAD systems and realistic rendering            |    |   |
|   | techniques, Digital mock-up, Model building, Model analysis, Modeling   | •  |   |
|   | and simulations in Product Design, Examples/Case studies                |    |   |
| 5 | Integration of Environmental Aspects in Product Design: Sustainable     | 06 |   |
|   | Development, Design for Environment, Need for Life Cycle                |    |   |
|   | Environmental Strategies, Useful Life Extension Strategies, End-of-Life |    |   |
|   | Strategies, Introduction of Environmental Strategies into the Design    |    |   |
|   | Process, Life Cycle Environmental Strategies and Considerations for     |    |   |
|   | Product Design                                                          |    |   |
| 6 | Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and     | 06 |   |
|   | Framework of Life Cycle Assessment, Phases of LCA in ISO Standards,     |    |   |
|   | Fields of Application and Limitations of Life Cycle Assessment, Cost    |    |   |
|   | Analysis and the Life Cycle Approach, General Framework for LCCA,       |    |   |
|   | Evolution of Models for Product Life Cycle Cost Analysis                |    |   |

### **Reference Books:**

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, ImmonenAnselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

# Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                      |                                       |          |                       |                  |       |   |  |  |  |
|----------------------|--------------------------------------|---------------------------------------|----------|-----------------------|------------------|-------|---|--|--|--|
| Course               | Course Name                          |                                       |          | g Scheme<br>ct Hours) | Cre              |       |   |  |  |  |
| Code                 |                                      | Theory                                | Tutorial | Theory                | <b>Tutoria</b> l | Total |   |  |  |  |
| ILO7012              | Reliability Engin<br>(abbreviated as | oility Engineering<br>reviated as RE) |          | -                     | 3                |       | 3 |  |  |  |
|                      |                                      |                                       |          |                       |                  |       |   |  |  |  |
|                      |                                      | Examina                               |          |                       |                  |       |   |  |  |  |
| ~                    |                                      |                                       | Г        | Theory                |                  |       |   |  |  |  |

|                |                            | Examination Scheme |           |      |              |                    |      |       |  |
|----------------|----------------------------|--------------------|-----------|------|--------------|--------------------|------|-------|--|
|                |                            |                    |           |      |              |                    |      |       |  |
| Course<br>code | Course Name                | Interna            | al Assess | ment | End          | Exam               | Term | Total |  |
| code           |                            | Test 1             | Test 2    | Avg. | Sem.<br>Exam | Duration<br>(Hrs.) | Work | •     |  |
| ILO7012        | Reliability<br>Engineering | 20                 | 20        | 20   | 80           | 03                 | -    | 100   |  |
|                |                            |                    |           |      |              |                    |      |       |  |

|            | • To familiarize the students with various aspects of probability theory     |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Course     | • To acquaint the students with reliability and its concepts                 |  |  |  |  |  |  |
|            | • To introduce the students to methods of estimating the system reliability  |  |  |  |  |  |  |
| Objectives | of simple and complex systems                                                |  |  |  |  |  |  |
|            | • To understand the various aspects of Maintainability, Availability and     |  |  |  |  |  |  |
|            | FMEA procedure                                                               |  |  |  |  |  |  |
|            | Student will be able to                                                      |  |  |  |  |  |  |
|            | • Understand and apply the concept of Probability to engineering             |  |  |  |  |  |  |
| Course     | problems                                                                     |  |  |  |  |  |  |
| Outcomes   | • Apply various reliability concepts to calculate different reliability      |  |  |  |  |  |  |
| Outcomes   | parameters                                                                   |  |  |  |  |  |  |
|            | • Estimate the system reliability of simple and complex systems              |  |  |  |  |  |  |
|            | <ul> <li>Carry out a Failure Mode Effect and Criticality Analysis</li> </ul> |  |  |  |  |  |  |
|            |                                                                              |  |  |  |  |  |  |

|         | Module                                                                       | Contents                                                                  | Hours |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------|--|--|--|--|--|--|
|         | 1                                                                            | Probability theory: Probability: Standard definitions and concepts;       | 10    |  |  |  |  |  |  |
|         |                                                                              | Conditional Probability, Baye's Theorem.                                  |       |  |  |  |  |  |  |
|         | <b>Probability Distributions:</b> Central tendency and Dispersion; Binomial, |                                                                           |       |  |  |  |  |  |  |
|         |                                                                              | Normal, Poisson, Weibull, Exponential, relations between them and         |       |  |  |  |  |  |  |
|         |                                                                              | their significance.                                                       |       |  |  |  |  |  |  |
|         |                                                                              | Measures of Dispersion: Mean, Median, Mode, Range, Mean                   |       |  |  |  |  |  |  |
|         |                                                                              | Deviation, Standard Deviation, Variance, Skewness and Kurtosis.           |       |  |  |  |  |  |  |
|         | 2                                                                            | Reliability Concepts: Reliability definitions, Importance of Reliability, | 10    |  |  |  |  |  |  |
|         |                                                                              | Quality Assurance and Reliability, Bath Tub Curve.                        |       |  |  |  |  |  |  |
|         |                                                                              | Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean   |       |  |  |  |  |  |  |
|         |                                                                              | Time To Failure (MTTF), MTBF, Reliability Functions.                      |       |  |  |  |  |  |  |
|         |                                                                              | Reliability Hazard Models: Constant Failure Rate, Linearly increasing,    |       |  |  |  |  |  |  |
|         |                                                                              | Time Dependent Failure Rate, Weibull Model. Distribution functions        |       |  |  |  |  |  |  |
| · · · · |                                                                              | and reliability analysis.                                                 |       |  |  |  |  |  |  |
|         | 3                                                                            | System Reliability                                                        | 05    |  |  |  |  |  |  |
|         |                                                                              | System Configurations: Series, parallel, mixed configuration, k out of n  |       |  |  |  |  |  |  |
|         |                                                                              | structure, Complex systems.                                               |       |  |  |  |  |  |  |
|         | 4                                                                            | Reliability Improvement                                                   | 10    |  |  |  |  |  |  |
|         |                                                                              | Redundancy Techniques: Element redundancy, Unit redundancy,               |       |  |  |  |  |  |  |

|   | Standby redundancies. Markov analysis.<br>System Reliability Analysis – Enumeration method, Cut-set method,<br>Success<br>Path method, Decomposition method. |    |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 5 | Maintainability and Availability                                                                                                                             | 05 |  |
|   | System downtime, Design for Maintainability: Maintenance                                                                                                     |    |  |
|   | requirements, Design methods: Fault Isolation and self-diagnostics,                                                                                          |    |  |
|   | Parts standardization and Interchangeability, Modularization and                                                                                             |    |  |
|   | Accessibility, Repair Vs Replacement.                                                                                                                        |    |  |
|   | Availability – qualitative aspects.                                                                                                                          |    |  |
| 6 | Failure Mode, Effects and Criticality Analysis: Failure mode effects                                                                                         | 05 |  |
|   | analysis, severity/criticality analysis, FMECA examples. Fault tree                                                                                          | •  |  |
|   | construction, basic symbols, development of functional reliability block                                                                                     |    |  |
|   | diagram, Fault tree analysis and Event tree Analysis                                                                                                         |    |  |

### **Reference Books:**

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                |                                                          | Unive       | ersity of I        | Mumb                               | ai           |                    |                  |       |  |
|----------------|----------------------------------------------------------|-------------|--------------------|------------------------------------|--------------|--------------------|------------------|-------|--|
| Course<br>Code | Course Na                                                | Course Name |                    | Teaching Scheme<br>(Contact Hours) |              |                    | Credits Assigne  |       |  |
| Coue           |                                                          |             | Theor              | y Tu                               | torial       | Theory             | <b>Tutoria</b> l | Total |  |
| ILO7013        | Management<br>Information System<br>(abbreviated as MIS) |             | 3                  |                                    |              | 3 -                |                  | 3     |  |
|                |                                                          | -           |                    |                                    |              |                    |                  |       |  |
|                |                                                          |             | Examination Scheme |                                    |              |                    |                  |       |  |
| Course         |                                                          |             |                    | Theory                             |              |                    |                  |       |  |
|                | Course Name                                              | Intern      | al Assess          | ment                               | End          | Exam               | Term             | Total |  |
| code           |                                                          |             | Test 2             | Avg.                               | Sem.<br>Exam | Duration<br>(Hrs.) | Work             | Total |  |
| ILO7013        | Management<br>Information                                | 20          | 20                 | 20                                 | 80           | 03                 | -                | 100   |  |

| Comme          |             | Examination Scheme |           |       |      |          |      |       |
|----------------|-------------|--------------------|-----------|-------|------|----------|------|-------|
|                |             |                    |           | Theor | y (  |          |      |       |
| Course<br>code | Course Name | Interna            | al Assess | ment  | End  | Exam     | Term | Total |
| coue           |             | Test 1             | Test 2    | Aug   | Sem. | Duration | Work | Total |
|                |             | Test I             | Test 2    | Avg.  | Exam | (Hrs.)   |      |       |
|                | Management  |                    |           |       |      |          |      |       |
| ILO7013        | Information | 20                 | 20        | 20    | 80   | 03       | -    | 100   |
|                | System      |                    |           |       |      |          |      |       |
|                |             |                    |           |       |      |          |      |       |

|                      | • The course is blend of Management and Technical field.                              |
|----------------------|---------------------------------------------------------------------------------------|
|                      | • Discuss the roles played by information technology in today's business              |
|                      | and define various technology architectures on which information                      |
|                      | systems are built                                                                     |
| C                    | • Define and analyze typical functional information systems and identify              |
| Course<br>Objectives | how they meet the needs of the firm to deliver efficiency and                         |
| Objectives           | competitive advantage                                                                 |
|                      | <ul> <li>Identify the basic steps in systems development</li> </ul>                   |
|                      | • Define and analyze various MIS management responsibilities, including               |
|                      | planning, budgeting, project management, and personnel management                     |
|                      | <ul> <li>Discuss critical ethical and social issues in information systems</li> </ul> |
|                      | Student will be able to                                                               |
|                      | Explain how information systems Transform Business                                    |
|                      | • Identify the impact information systems have on an organization                     |
| Course               | • Describe IT infrastructure and its components and its current trends                |
| Outcomes             | • Understand the principal tools and technologies for accessing                       |
| outcomes             | information from databases to improve business performance and                        |
|                      | decision making                                                                       |
|                      | • Identify the types of systems used for enterprise-wide knowledge                    |
|                      | management and how they provide value for businesses                                  |
|                      |                                                                                       |

|   |        | <ul> <li>information from databases to improve business performandecision making</li> <li>Identify the types of systems used for enterprise-wide known management and how they provide value for businesses</li> </ul> |       |
|---|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | Module | Contents                                                                                                                                                                                                               | Hours |
|   | 1      | Introduction To Information Systems (IS): Computer Based Information                                                                                                                                                   | 7     |
| • |        | Systems, Impact of IT on organizations, Importance of IS to Society.                                                                                                                                                   |       |
|   |        | Organizational Strategy, Competitive Advantages and IS.                                                                                                                                                                |       |
|   | 2      | Data and Knowledge Management: Database Approach, Big Data, Data                                                                                                                                                       | 9     |
|   |        | warehouse and Data Marts, Knowledge Management.                                                                                                                                                                        |       |
|   |        | Business intelligence (BI): Managers and Decision Making, BI for Data                                                                                                                                                  |       |
|   |        | analysis and Presenting Results                                                                                                                                                                                        |       |

| 3 | Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls        | 6  |
|---|----------------------------------------------------------------------------------------------|----|
|   |                                                                                              |    |
| 4 | Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping,                             | 7  |
|   | Marketing, Operational and Analytic CRM, E-business and E-                                   | ·  |
|   | commerce – B2B B2C. Mobile commerce.                                                         |    |
| 5 | Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model. | 6  |
| 6 |                                                                                              | 10 |
| 6 | Information System within Organization: Transaction Processing                               |    |
|   | Systems, Functional Area Information System, ERP and ERP support of                          |    |
|   | Business Process.                                                                            |    |
|   | Acquiring Information Systems and Applications: Various System                               |    |
|   | development life cycle models.                                                               | •  |

### **Reference Books:**

- 1. Management Information Systems: Kelly Rainer, Brad Prince by Wiley
- 2. Management Information Systems: Managing the Digital Firm (10th Edition). K.C. Laudon and J.P. Laudon, Prentice Hall, 2007.
- 3. Managing Information Systems: Strategy and Organization, D. Boddy, A. Boonstra, Prentice Hall, 2008

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                               |        |                       |                  |                 |       |  |
|----------------------|-----------------------------------------------|--------|-----------------------|------------------|-----------------|-------|--|
| Course               | <b>Course Name</b>                            |        | g Scheme<br>et Hours) | Credits Assigned |                 |       |  |
| Code                 |                                               | Theory | Tutorial              | Theory           | <b>Tutorial</b> | Total |  |
| ILO7014              | Design of Experiments<br>(abbreviated as DoE) | 3      | -                     | 3                |                 | 3     |  |
|                      |                                               |        |                       |                  |                 |       |  |

| ILO7014        | Design of Experiments<br>(abbreviated as DoE) |         | 3                            |      | -            | 3                  |      | 3     |
|----------------|-----------------------------------------------|---------|------------------------------|------|--------------|--------------------|------|-------|
|                |                                               |         |                              | Eve  |              | Schame             |      |       |
| Course         |                                               |         | Examination Scheme<br>Theory |      |              |                    |      |       |
| Course<br>code | Course Name                                   | Interna | al Assess                    | ment | End          | Exam               | Term | Total |
|                |                                               | Test 1  | Test 2                       | Avg. | Sem.<br>Exam | Duration<br>(Hrs.) | Work | •     |
| LO7014         | Design of<br>Experiments                      | 20      | 20                           | 20   | 80           | 03                 | -    | 100   |
|                |                                               |         |                              |      |              |                    |      |       |

|            | 1. To understand the issues and principles of Design of Experiments         |
|------------|-----------------------------------------------------------------------------|
| Course     | (DOE).                                                                      |
| Objectives | 2. To list the guidelines for designing experiments.                        |
| Objectives | 3. To become familiar with methodologies that can be used in conjunction    |
|            | with experimental designs for robustness and optimization                   |
|            | Student will be able to                                                     |
| C          | • Plan data collection, to turn data into information and to make decisions |
| Course     | that lead to appropriate action.                                            |
| Outcomes   | • Apply the methods taught to real life situations.                         |
|            | • Plan, analyze, and interpret the results of experiments                   |
|            |                                                                             |

| Module   | Contents                                                                                                   | Hours |
|----------|------------------------------------------------------------------------------------------------------------|-------|
| 1        | Introduction: Strategy of Experimentation, Typical Applications of                                         | 6     |
|          | Experimental Design, Guidelines for Designing Experiments, Response                                        |       |
|          | Surface Methodology.                                                                                       |       |
| 2        | Fitting Regression Models: Linear Regression Models, Estimation of                                         | 8     |
|          | the Parameters in Linear Regression Models, Hypothesis Testing in                                          |       |
| ( ( )    | Multiple Regression, Confidence Intervals in Multiple Regression,                                          |       |
|          | Prediction of new response observation, Regression model diagnostics,                                      |       |
|          | Testing for lack of fit.                                                                                   |       |
| 3        | Two-Level Factorial Designs: The 2 <sup>2</sup> Design, The 2 <sup>3</sup> Design, The                     | 7     |
| $\frown$ | General 2 <sup>k</sup> Design, A Single Replicate of the 2 <sup>k</sup> Design, The Addition of            |       |
|          | Center Points to the 2 <sup>k</sup> Design, Blocking in the 2 <sup>k</sup> Factorial Design, Split-        |       |
|          | Plot Designs.                                                                                              |       |
| 4        | Two-Level Fractional Factorial Designs: The One-Half Fraction of the                                       | 7     |
|          | 2 <sup>k</sup> Design, The One-Quarter Fraction of the 2 <sup>k</sup> Design, The General 2 <sup>k-p</sup> |       |
| ·        | Fractional Factorial Design, Resolution III Designs, Resolution IV and V                                   |       |
|          | Designs, Fractional Factorial Split-Plot Designs.                                                          |       |
| 5        | Conducting Tests: Testing Logistics, Statistical aspects of conducting                                     | 7     |
|          | tests, Characteristics of good and bad data sets, Example experiments,                                     |       |
|          | Attribute Vs Variable data sets.                                                                           |       |
| 6        | Taguchi Approach: Crossed Array Designs and Signal-to-Noise Ratios,                                        | 4     |
|          | Analysis Methods, Robust design examples.                                                                  |       |

## **Reference Books:**

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3<sup>rd</sup> edition, John Wiley & Sons, New York, 2001
- 2. D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2<sup>nd</sup> Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Philip J Ross, "Taguchi Technique for Quality Engineering," McGraw Hill.
- 7. Madhav S Phadake, "Quality Engineering using Robust Design," Prentice Hall.

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|         | Unive                                     | ersity of Mu       | umbai                 |        |                  |       |  |
|---------|-------------------------------------------|--------------------|-----------------------|--------|------------------|-------|--|
| Course  | <b>Course Name</b>                        |                    | g Scheme<br>ct Hours) | Cre    |                  |       |  |
| Code    |                                           | Theory             | Tutorial              | Theory | <b>Tutoria</b> l | Total |  |
| ILO7015 | Operation Research<br>(abbreviated as OR) | 3                  | -                     | 3      |                  | 3     |  |
|         |                                           |                    |                       |        |                  |       |  |
| 0       |                                           | Examination Scheme |                       |        |                  |       |  |
|         |                                           | Г                  | Theory                |        |                  |       |  |

|         |                           | Examination Scheme  |               |        |      |          |      |       |
|---------|---------------------------|---------------------|---------------|--------|------|----------|------|-------|
| Course  |                           |                     |               | Theor  | У    |          |      |       |
| code    | Course Name               | Internal Assessment |               |        | End  | Exam     | Term | Total |
| code    |                           | Test 1              | Test 2        | 2 Avg. | Sem. | Duration | Work |       |
|         |                           |                     | Test 1 Test 2 |        | Exam | (Hrs.)   |      | *     |
| ILO7015 | <b>Operation Research</b> | 20                  | 20            | 20     | 80   | 03       |      | 100   |
|         |                           |                     |               |        |      |          |      |       |

|            | • Formulate a real-world problem as a mathematical programming model.      |
|------------|----------------------------------------------------------------------------|
| Course     | • Understand the mathematical tools that are needed to solve optimization  |
| Objectives | problems.                                                                  |
|            | • Use mathematical software to solve the proposed models.                  |
|            | Student will be able to                                                    |
|            | • Understand the theoretical workings of the simplex method for linear     |
|            | programming and perform iterations of it by hand.                          |
|            | • Understand the relationship between a linear program and its dual,       |
|            | including strong duality and complementary slackness.                      |
|            | • Perform sensitivity analysis to determine the direction and magnitude of |
| Course     | change of a model's optimal solution as the data change.                   |
| Outcomes   | • Solve specialized linear programming problems like the transportation    |
| outcomes   | and assignment problems.                                                   |
|            | • Solve network models like the shortest path, minimum spanning tree,      |
|            | and maximum flow problems.                                                 |
|            | • Understand the applications of, basic methods for, and challenges in     |
|            | integer programming                                                        |
|            | Model a dynamic system as a queuing model and compute important            |
|            | performance measures                                                       |

| Module | Contents                                                              | Hours |
|--------|-----------------------------------------------------------------------|-------|
|        | Introduction to Operations Research: Introduction, Historical         | 2     |
|        | Background, Scope of Operations Research , Features of Operations     |       |
|        | Research, Phases of Operations Research, Types of Operations Research |       |
|        | Models, Operations Research Methodology, Operations Research          |       |
|        | Techniques and Tools , Structure of the Mathematical Model,           |       |
|        | Limitations of Operations Research                                    |       |
| 2      | Linear Programming: Introduction, Linear Programming Problem,         | 6     |
|        | Requirements of LPP, Mathematical Formulation of LPP, Graphical       |       |
|        | method, Simplex Method Penalty Cost Method or Big M-method, Two       |       |
|        | Phase Method, Revised simplex method, Duality, Primal – Dual          |       |
|        | construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,    |       |
|        | Complimentary Slackness Theorem, Main Duality Theorem, Dual           |       |
|        | Simplex Method, Sensitivity Analysis                                  |       |
| 3      | Transportation Problem: Formulation, solution, unbalanced             | 6     |

|   | -                                                                      |   |  |
|---|------------------------------------------------------------------------|---|--|
|   | Transportation problem. Finding basic feasible solutions – Northwest   |   |  |
|   | corner rule, least cost method and Vogel's approximation method.       |   |  |
|   | Optimality test: the stepping stone method and MODI method.            |   |  |
|   | Assignment Problem: Introduction, Mathematical Formulation of the      |   |  |
|   | Problem, Hungarian Method Algorithm, Processing of n Jobs Through      |   |  |
|   | Two Machines and m Machines, Graphical Method of Two Jobs m            |   |  |
|   | Machines Problem Routing Problem, Travelling Salesman Problem          |   |  |
| 4 | Integer Programming Problem: Introduction, Types of Integer            | 6 |  |
|   | Programming Problems, Gomory's cutting plane Algorithm, Branch and     |   |  |
|   | Bound Technique. Introduction to Decomposition algorithms.             |   |  |
| 5 | Queuing models: queuing systems and structures, single server and      | 6 |  |
|   | multi-server models, Poisson input, exponential service, constant rate | • |  |
|   | service, finite and infinite population                                |   |  |
| 6 | Simulation: Introduction, Methodology of Simulation, Basic Concepts,   | 4 |  |
|   | Simulation Procedure, Application of Simulation Monte-Carlo            |   |  |
|   | Method: Introduction, Monte-Carlo Simulation, Applications of          |   |  |
|   | Simulation, Advantages of Simulation, Limitations of Simulation        |   |  |
| 7 | <b>Dynamic programming</b> . Characteristics of dynamic programming.   | 4 |  |
|   | Dynamic programming approach for Priority Management employment        |   |  |
|   | smoothening, capital budgeting, Stage Coach/Shortest Path, cargo       |   |  |
|   | loading and Reliability problems.                                      |   |  |
| 8 | Games Theory. Competitive games, rectangular game, saddle point,       | 4 |  |
|   | minimax (maximin) method of optimal strategies, value of the game.     |   |  |
|   | Solution of games with saddle points, dominance principle. Rectangular |   |  |
|   | games without saddle point – mixed strategy for 2 X 2 games.           |   |  |
| 9 | <b>Inventory Models:</b> Classical EOQ Models, EOQ Model with Price    | 4 |  |
| - | Breaks, EOQ with Shortage, Probabilistic EOQ Model,                    |   |  |
| L |                                                                        |   |  |

#### **Books Recommended: Reference Books:**

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

# Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                |                                         | Unive | rsity of Mu | umbai                 |          |                  |       |  |
|----------------|-----------------------------------------|-------|-------------|-----------------------|----------|------------------|-------|--|
| Course<br>Code | Course Name                             |       |             | g Scheme<br>et Hours) | Cre      |                  |       |  |
| Code           |                                         |       | Theory      | Tutorial              | Theory   | <b>Tutoria</b> l | Total |  |
| ILO7016        | Cyber Security and<br>(abbreviated as C |       | 3           | -                     | 3        |                  | 3     |  |
|                |                                         |       |             |                       |          |                  |       |  |
|                |                                         |       |             | Examinatio            | n Scheme |                  |       |  |
| Course         |                                         |       | Г           | Theory                |          |                  |       |  |

|                                                                               |                            |        |        | Exa   | mination | Scheme   |      |     |
|-------------------------------------------------------------------------------|----------------------------|--------|--------|-------|----------|----------|------|-----|
| Course                                                                        |                            |        |        | Theor | y        |          |      |     |
| Course code     Course Name     Internal Assessment     End     Exam     Term | Total                      |        |        |       |          |          |      |     |
| coue                                                                          |                            | Test 1 | Test 2 | Avg.  | Sem.     | Duration | Work |     |
|                                                                               |                            |        |        | 101   | Exam     | (Hrs.)   |      |     |
| ILO7016                                                                       | Cyber Security and<br>Laws | 20     | 20     | 20    | 80       | 03       | -    | 100 |
| <u>.                                    </u>                                  |                            |        |        |       |          |          | -    |     |

| Course     | • To understand and identify different types cyber crime and cyber law         |
|------------|--------------------------------------------------------------------------------|
| Objectives | <ul> <li>To recognized Indian IT Act 2008 and its latest amendments</li> </ul> |
| Objectives | <ul> <li>To learn various types of security standards compliances</li> </ul>   |
|            | Student will be able to                                                        |
|            | • Understand the concept of cyber crime and its effect on outside world        |
| Course     | • Interpret and apply IT law in various legal issues                           |
| Outcomes   | • Distinguish different aspects of cyber law                                   |
|            | • Apply Information Security Standards compliance during software              |
|            | design and development                                                         |
|            |                                                                                |

| Module | Contents                                                               | Hours |
|--------|------------------------------------------------------------------------|-------|
| 1      | Introduction to Cybercrime: Cybercrime definition and origins of the   | 4     |
|        | world, Cybercrime and information security, Classifications of         |       |
|        | cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective   |       |
|        | on cybercrimes.                                                        |       |
| 2      | Cyber offenses & Cybercrime: How criminal plan the attacks, Social     | 10    |
|        | Engg, Cyber stalking, Cybercafé and Cybercrimes, Botnets, Attack       |       |
|        | vector, Cloud computing, Proliferation of Mobile and Wireless Devices, |       |
|        | Trends in Mobility, Credit Card Frauds in Mobile and Wireless          |       |
|        | Computing Era, Security Challenges Posed by Mobile Devices, Registry   |       |
|        | Settings for Mobile Devices, Authentication Service Security, Attacks  |       |
|        | on Mobile/Cell Phones, Mobile Devices: Security Implications for       |       |
|        | Organizations, Organizational Measures for Handling Mobile, Devices-   |       |
|        | Related Security Issues, Organizational Security Policies and Measures |       |
|        | in Mobile Computing Era, Laptops                                       |       |
| 3      | Tools and Methods Used in Cyberline: Phishing, Password Cracking,      | 6     |
|        | Keyloggers and Spywares, Virus and Worms, Steganography, DoS and       |       |
|        | DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless     |       |
|        | Networks, Phishing, Identity Theft (ID Theft)                          |       |
| 4      | The Concept of Cyberspace: E-Commerce, The Contract Aspects in         | 8     |
|        | Cyber Law ,The Security Aspect of Cyber Law ,The Intellectual          |       |
|        | Property Aspect in Cyber Law, The Evidence Aspect in Cyber Law         |       |
|        | , The Criminal Aspect in Cyber Law, Global Trends in Cyber Law,        |       |
|        | Legal Framework for Electronic Data Interchange Law Relating to        |       |

|   | Electronic Banking, The Need for an Indian Cyber Law                                  |   |
|---|---------------------------------------------------------------------------------------|---|
| 5 | Indian IT Act.: Cyber Crime and Criminal Justice : Penalties,                         | 8 |
|   | Adjudication and Appeals Under the IT Act, 2000,IT Act. 2008 and its Amendments       |   |
| 6 | Information Security Standard compliances<br>SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI. | 6 |

### **Reference Books:**

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                | Unive                                                                   | rsity of Mu | umbai                 |        |                 |       |
|----------------|-------------------------------------------------------------------------|-------------|-----------------------|--------|-----------------|-------|
| Course<br>Code | Course Name                                                             |             | g Scheme<br>ct Hours) | Cre    | dits Assign     | ed    |
| Code           |                                                                         | Theory      | Tutorial              | Theory | <b>Tutorial</b> | Total |
| ILO7017        | Disaster Management<br>and Mitigation Measures<br>(abbreviated as DMMM) | 3           | -                     | 3      | <u>)</u>        | 3     |

|                |                                                      |         |           | Exa   | mination | Scheme   |      |       |
|----------------|------------------------------------------------------|---------|-----------|-------|----------|----------|------|-------|
| Course         |                                                      |         |           | Theor |          |          |      |       |
| Course<br>code | Course Name                                          | Interna | al Assess | ment  | End      | Exam     | Term | Total |
| couc           |                                                      | Test 1  | Test 2    | Avg.  | Sem.     | Duration | Work | Total |
|                |                                                      | 10501   | 1050 2    | 1145. | Exam     | (Hrs.)   |      |       |
| ILO7017        | Disaster<br>Management and<br>Mitigation<br>Measures | 20      | 20        | 20    | 80       | 03       | -    | 100   |

|            | • To understand the various types of disaster occurring around the world   |
|------------|----------------------------------------------------------------------------|
|            | <ul> <li>To identify extent and damaging capacity of a disaster</li> </ul> |
|            | • To study and understand the means of losses and methods to overcome      |
|            | /minimize it.                                                              |
| ~          | • To understand role of individual and various organization during and     |
| Course     | after disaster                                                             |
| Objectives |                                                                            |
|            | • To know warning systems, their implementation and based on this to       |
|            | initiate training to a laymen                                              |
|            | • To understand application of GIS in the field of disaster management     |
|            | • To understand the emergency government response structures before,       |
|            | during and after disaster                                                  |
|            | Student will be able to                                                    |
|            | • Understand natural as well as manmade disaster and their extent and      |
|            | possible effects on the economy.                                           |
|            | • Planning of national importance structures based upon the previous       |
| Course     | history.                                                                   |
| Outcomes   |                                                                            |
|            | Understand government policies, acts and various organizational            |
|            | structure associated with an emergency.                                    |
|            | • Know the simple do's and don'ts in such extreme events and act           |
|            | accordingly                                                                |
|            |                                                                            |

| Module | Contents                                                                                                                                                                                                                                                                                                                                   | Hours |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Introduction: Definition of Disaster, hazard, global and Indian<br>scenario, general perspective, importance of study in human life,<br>Direct and indirect effects of disasters, long term effects of disasters.<br>Introduction to global warming and climate change.                                                                    | 03    |
| 2      | Natural Disaster and Manmade disasters: Natural Disaster: Meaning<br>and nature of natural disaster, Flood, Flash flood, drought, cloud<br>burst, Earthquake, Landslides, Avalanches, Volcanic eruptions,<br>Mudflow, Cyclone, Storm, Storm Surge, climate change, global<br>warming, sea level rise, ozone depletion . Manmade Disasters: | 06    |

-

|   | Chemical, Industrial, Nuclear and Fire Hazards. Role of growing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | population and subsequent industrialization, urbanization and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | changing lifestyle of human beings in frequent occurrences of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | manmade disasters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •  |
| 3 | Disaster Management, Policy and Administration: Disaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 06 |
|   | management: meaning, concept, importance, objective of disaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|   | management policy, disaster risks in India, Paradigm shift in disaster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | management. Policy and administration: Importance and principles of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | disaster management policies, command and co-ordination of in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | disaster management, rescue operations-how to start with and how to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | proceed in due course of time, study of flowchart showing the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •  |
| 4 | Institutional Framework for Disaster Management in India:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 06 |
|   | Importance of public awareness, Preparation and execution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   | emergency management programme. Scope and responsibilities of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | National Institute of Disaster Management (NIDM) and National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|   | disaster management authority (NDMA) in India. Methods and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|   | measures to avoid disasters, Management of casualties, set up of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|   | emergency facilities, importance of effective communication amongst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|   | different agencies in such situations. Use of Internet and softwares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | for effective disaster management. Applications of GIS, Remote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|   | sensing and GPS in this regard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| 5 | Financing Relief Measures: Ways to raise finance for relief                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 09 |
| - | expenditure,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|   | Role of government agencies and NGO's in this process, Legal aspects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | related to finance raising as well as overall management of disasters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | Various NGO's and the works they have carried out in the past on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | occurrence of various disasters, Ways to approach these teams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|   | International relief aid agencies and their role in extreme events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 6 | Preventive and Mitigation Measures: Pre-disaster, during disaster and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 06 |
| - | post-disaster measures in some events in general, Structural mapping:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Risk mapping, assessment and analysis, sea walls and embankments,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|   | Bio shield, shelters, early warning and communication. Non Structural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|   | Mitigation: Community based disaster preparedness, risk transfer and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|   | risk financing, capacity development and training, awareness and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|   | education, contingency plans. Do's and don'ts in case of disasters and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|   | effective implementation of relief aids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   | The second |    |

# **Reference Books:**

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P. Lo Albert, K.W. Yonng – Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Course<br>CodeCourse NameTeaching Scheme<br>(Contact Hours)Credits AssignedILO7018Energy Audit and<br>Management3-3-3(abbreviated as EAM)3-3 |         | Unive       | ersity of Mu | ımbai    |                 |       |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|--------------|----------|-----------------|-------|
| TheoryTutorialTheoryTutorialTotalILO7018Management3-3-3                                                                                      |         | Course Name |              | 0        | Credits Assign  | ed    |
| ILO7018 Management 3 - 3 - 3                                                                                                                 | Code    |             | Theory       | Tutorial | Theory Tutorial | Total |
|                                                                                                                                              | ILO7018 |             | 3            | -        | 3 -             | 3     |

| ILU/018        | (abbreviated as                |                   | 3                   |                       | -                        | 3                          | -            | 3      |
|----------------|--------------------------------|-------------------|---------------------|-----------------------|--------------------------|----------------------------|--------------|--------|
|                |                                |                   |                     | Exa                   | mination                 | Scheme                     |              | $\sim$ |
| Course<br>code | Course Name                    | Interna<br>Test 1 | al Assess<br>Test 2 | Theor<br>ment<br>Avg. | y<br>End<br>Sem.<br>Exam | Exam<br>Duration<br>(Hrs.) | Term<br>Work | Total  |
| ILO7018        | Energy Audit and<br>Management | 20                | 20                  | 20                    | 80                       | 03                         | -            | 100    |
|                |                                |                   |                     |                       |                          |                            |              |        |

|            | • To understand the importance of energy security for sustainable development and the fundamentals of energy conservation. |
|------------|----------------------------------------------------------------------------------------------------------------------------|
| ~          | 1                                                                                                                          |
| Course     | • To introduce performance evaluation criteria of various electrical and                                                   |
| Objectives | thermal installations to facilitate the energy management                                                                  |
|            | • To relate the data collected during performance evaluation of systems                                                    |
|            | for identification of energy saving opportunities                                                                          |
|            | Student will be able to                                                                                                    |
|            | • To identify and describe present state of energy security and its                                                        |
|            | importance.                                                                                                                |
|            | • To identify and describe the basic principles and methodologies adopted                                                  |
| C          | in energy audit of an utility.                                                                                             |
| Course     | • To describe the energy performance evaluation of some common                                                             |
| Outcomes   | electrical installations and identify the energy saving opportunities.                                                     |
|            | • To describe the energy performance evaluation of some common                                                             |
|            | thermal installations and identify the energy saving opportunities                                                         |
|            | To analyze the data collected during performance evaluation and                                                            |
|            | recommend energy saving measures                                                                                           |
|            |                                                                                                                            |

|   |        | recommend energy saving measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|   | Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours |
|   | 1      | Energy Scenario: Present Energy Scenario, Energy Pricing, Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     |
|   |        | Sector Reforms, Energy Security, Energy Conservation and its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|   |        | Importance, Energy Conservation Act-2001 and its Features. Basics of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|   |        | Energy and its various forms, Material and Energy balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 1 | 2      | <b>Energy Audit Principles:</b> Definition, Energy audit- need, Types of<br>energy audit, Energy management (audit) approach-understanding<br>energy costs, Bench marking, Energy performance, Matching energy use<br>to requirement, Maximizing system efficiencies, Optimizing the input<br>energy requirements, Fuel and energy substitution. Elements of<br>monitoring& targeting; Energy audit Instruments; Data and information-<br>analysis. Financial analysis techniques: Simple payback period, NPV,<br>Return on investment (ROI), Internal rate of return (IRR) | 8     |

| 2 |                                                                                                                                | 10  | I |
|---|--------------------------------------------------------------------------------------------------------------------------------|-----|---|
| 3 | Energy Management and Energy Conservation in Electrical                                                                        | 10  |   |
|   | System: Electricity billing, Electrical load management and maximum                                                            |     |   |
|   | demand Control; Power factor improvement, Energy efficient                                                                     |     |   |
|   | equipments and appliances, star ratings. Energy efficiency measures in                                                         |     |   |
|   | lighting system, Lighting control: Occupancy sensors, daylight                                                                 |     |   |
|   | integration, and use of intelligent controllers.                                                                               |     |   |
|   |                                                                                                                                |     |   |
|   | Energy conservation opportunities in: water pumps, industrial drives,                                                          |     |   |
|   | induction motors, motor retrofitting, soft starters, variable speed drives.                                                    |     |   |
|   |                                                                                                                                | 10  |   |
| 4 | Energy Management and Energy Conservation in Thermal                                                                           | •10 |   |
|   | Systems: Review of different thermal loads; Energy conservation                                                                |     |   |
|   | opportunities in: Steam distribution system, Assessment of steam                                                               |     |   |
|   | distribution losses, Steam leakages, Steam trapping, Condensate and                                                            |     |   |
|   | flash steam recovery system.                                                                                                   |     |   |
|   |                                                                                                                                |     |   |
|   | General fuel economy measures in Boilers and furnaces, Waste heat                                                              |     |   |
|   | recovery use of insulation- types and application. HVAC system:                                                                |     |   |
|   | Coefficient of performance, Capacity, factors affecting Refrigeration                                                          |     |   |
| 5 | and Air Conditioning system performance and savings opportunitiesEnergy Performance Assessment: On site Performance evaluation | 4   |   |
| 5 | techniques, Case studies based on: Motors and variable speed drive,                                                            | 4   |   |
|   | pumps, HVAC system calculations; Lighting System: Installed Load                                                               |     |   |
|   | Efficacy Ratio (ILER) method, Financial Analysis.                                                                              |     |   |
| 6 | <b>Energy conservation in Buildings:</b> Energy Conservation Building                                                          | 3   |   |
| Ŭ | Codes (ECBC): Green Building, LEED rating, Application of Non-                                                                 | -   |   |
|   | Conventional and Renewable Energy Sources                                                                                      |     |   |
| L |                                                                                                                                | 1   | I |

### **Reference Books:**

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

### **Theory Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| CodeCourse Name(Contact Hours)CodeTheoryTutorialTheoryTheoryTutorialTheoryTutorialILO7019Engineering (abbreviated3-3 |                         | ımbai    | rsity of Mu | Unive       |         |
|----------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-------------|-------------|---------|
| TheoryTutorialTheoryTutorialILO7019Engineering (abbreviated3-3                                                       |                         | 0        |             | Course Name |         |
| ILO7019 Engineering (abbreviated 3 - 3 -                                                                             | ial Theory Tutorial Tot | Tutorial | Theory      |             | Coue    |
| as DE)                                                                                                               | 3 - 3                   | -        | 3           | -           | ILO7019 |

|                |             | Unive       | ersity of N                        | Aumba   | ai       |                         |                 |         |  |
|----------------|-------------|-------------|------------------------------------|---------|----------|-------------------------|-----------------|---------|--|
| Course<br>Code | Course Name |             | Teaching Scheme<br>(Contact Hours) |         |          | <b>Credits Assigned</b> |                 |         |  |
| Coue           |             |             | Theory                             | / Tu    | torial   | Theory                  | <b>Tutorial</b> | Total   |  |
|                | Developme   | Development |                                    |         |          |                         |                 |         |  |
| ILO7019        |             |             | 3                                  |         | -        | 3                       | -               | 3       |  |
|                |             |             |                                    |         |          |                         |                 |         |  |
|                |             |             |                                    |         |          |                         |                 |         |  |
|                |             |             | Examination Scheme                 |         |          |                         |                 |         |  |
| Course         |             |             | Theor                              | y (     |          |                         |                 |         |  |
| code           | Course Name | Interna     | Internal Assessmen                 |         |          | Exam Term               |                 | Total   |  |
| couc           |             | Test 1      | est 1 Test 2 A                     |         | Sem.     | Duration                | n Work          | •1 Otal |  |
|                |             | I CSt I     | I CST Z                            | Avg.    | Exam     | (Hrs.)                  |                 |         |  |
| ILO7019        | Development | 20          | 20                                 | 20      | 80       | 03                      |                 | 100     |  |
| 11.07019       | Engineering | 20          | 20                                 | 20      | - 30     | 03                      |                 | 100     |  |
|                |             |             |                                    |         |          |                         |                 |         |  |
|                | • To under  | tand the a  | horactoria                         | tion of | munal Co | aisty and               | the Seene       | Natura  |  |

|            | • To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural |
|------------|-----------------------------------------------------------------------------------------------------|
|            | • To study Implications of 73rd CAA on Planning, Development and                                    |
| Course     | Governance of Rural Areas                                                                           |
| Objectives | • An exploration of human values, which go into making a 'good' human                               |
| Objectives | being, a 'good' professional, a 'good' society and a 'good life' in the                             |
|            | context of work life and the personal life of modern Indian professionals                           |
|            | • To understand the Nature and Type of Human Values relevant to                                     |
|            | Planning Institutions                                                                               |
|            | Student will be able to                                                                             |
|            | Apply knowledge for Rural Development                                                               |
| C          | • Apply knowledge for Management Issues.                                                            |
| Course     | • Apply knowledge for Initiatives and Strategies.                                                   |
| Outcomes   | • Develop acumen for higher education and research.                                                 |
|            | • Master the art of working in group of different nature.                                           |
|            | • Develop confidence to take up rural project activities independently.                             |
|            |                                                                                                     |

| Module | Contents                                                                 | Hours |
|--------|--------------------------------------------------------------------------|-------|
| 1      | Introduction to Rural Development Meaning, nature and scope of           | 08    |
|        | development; Nature of rural society in India; Hierarchy of settlements; |       |
|        | Social, economic and ecological constraints for rural development.       |       |
|        | Roots of Rural Development in India Rural reconstruction and             |       |
|        | Sarvodaya programme before independence; Impact of voluntary effort      |       |
|        | and Sarvodaya Movement on rural development; Constitutional              |       |
|        | direction, directive principles; Panchayati Raj - beginning of planning  |       |
|        | and community development; National extension services.                  |       |
| 2      | Post-Independence rural Development Balwant Rai Mehta Committee -        | 04    |
|        | three tier system of rural local. Government; Need and scope for         |       |
|        | people's participation and Panchayati Raj; Ashok Mehta Committee -       |       |
|        | linkage between Panchayati Raj, participation and rural development.     |       |
| 3      | Rural Development Initiatives in Five Year Plans Five Year Plans and     | 06    |
|        | Rural Development; Planning process at National, State, Regional and     |       |
|        | District levels; Planning, development, implementing and monitoring      |       |

|   | organizations and agencies; Urban and rural interface - integrated        |    |  |
|---|---------------------------------------------------------------------------|----|--|
|   | approach and local plans; Development initiatives and their               |    |  |
|   | convergence; Special component plan and sub-plan for the weaker           |    |  |
|   | section; Micro-eco zones; Data base for local planning; Need for          |    |  |
|   | decentralized planning; Sustainable rural development.                    |    |  |
| 4 | Post 73rd Amendment Scenario 73rd Constitution Amendment Act,             | 04 |  |
|   | including - XI schedule, devolution of powers, functions and finance;     |    |  |
|   | Panchayati Raj institutions - organizational linkages; Recent changes in  |    |  |
|   | rural local planning; Gram Sabha - revitalized Panchayati Raj;            |    |  |
|   | Institutionalization; resource mapping, resource mobilization including   |    |  |
|   | social mobilization; Information Technology and rural planning; Need      |    |  |
|   | for further amendments.                                                   | •  |  |
| 5 | Values and Science and Technology Material development and its            | 10 |  |
|   | values; the challenge of science and technology; Values in planning       |    |  |
|   | profession, research and education. Types of Values Psychological         |    |  |
|   | values — integrated personality; mental health; Societal values — the     |    |  |
|   | modern search for a good society; justice, democracy, rule of law, values |    |  |
|   | in the Indian constitution; Aesthetic values — perception and enjoyment   |    |  |
|   | of beauty; Moral and ethical values; nature of moral judgment; Spiritual  |    |  |
|   | values; different concepts; secular spirituality; Relative and absolute   |    |  |
|   | values; Human values— humanism and human values; human rights;            |    |  |
|   | human values as freedom, creativity, love and wisdom.                     |    |  |
| 6 | Ethics Canons of ethics; ethics of virtue; ethics of duty; ethics of      | 04 |  |
| U | responsibility; Work ethics; Professional ethics; Ethics in planning      | Ű. |  |
|   | profession, research and education                                        |    |  |
|   |                                                                           |    |  |

### **Reference Books:**

1. ITPI, Village Planning and Rural Development, ITPI, New Delhi

- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission

5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi

6. Planning Guide to Beginners

- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.

10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and

Practice, Vol. 4, No.4, pp.395 – 407

# Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

# **Theory Examination**:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Subject<br>Code | Subject Name                         | Tea    | ching Sch | eme  |        | Credits Assigned |       |  |
|-----------------|--------------------------------------|--------|-----------|------|--------|------------------|-------|--|
| ISL701          | Industrial<br>Process<br>Control-Lab | Theory | Pract.    | Tut. | Theory | Pract. Tut.      | Total |  |
|                 | Practice                             | -      | 2         | -    | -      | 1 -              | 1     |  |

| Sub<br>Code | Subject Name                                   | Examina  | ation sche | me   |            | 5            | . (           |      |       |
|-------------|------------------------------------------------|----------|------------|------|------------|--------------|---------------|------|-------|
| Cour        |                                                | Internal | Assessme   | ent  | End<br>Sem | Term<br>work | Pract.<br>and | Oral | Total |
|             |                                                | Test 1   | Test 2     | Avg. | Exam       | WOIR         | Oral          |      |       |
| ISL701      | Industrial<br>Process Control<br>–Lab Practice | -        | -          | 3    |            | 25           | _             | 25   | 50    |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | credits                         |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| ISL701            | Industrial Process Control-Lab Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                               |
| Course objectives | <ol> <li>To impart the knowledge of different industrial unit operations.</li> <li>To make them capable to design and develop instrume and control scheme for industrial processes.</li> <li>To give them exposure to work in process industry.</li> <li>To explain students about hazardous area and safety</li> </ol>                                                                                                                                                                       |                                 |
| Course Outcomes   | system.<br>The students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |
|                   | <ol> <li>Explain working and control of various heat transoperations</li> <li>Explain working and control of various heat and mass unit operations</li> <li>Explain the miscellaneous process equipment and their c</li> <li>Describe the processes of various continuous industries and instrumentation involved in them.</li> <li>Describe the processes of various batch process industing instrumentation involved in them.</li> <li>Classify hazardous areas in the industry.</li> </ol> | s transfer<br>ontrol<br>process |

Syllabus: Same as that of Subject ISC701 Industrial Process Control.

# List of Laboratory Experiments/Assignments:

| Sr.<br>No. | Detailed Content                                                                                                       | CO Mappi  |
|------------|------------------------------------------------------------------------------------------------------------------------|-----------|
| 1          | Demonstrate the operation and control scheme of Heat exchanger                                                         | CO1       |
| 2          | Learn working of various Unit Operations (Boilers/furnace / Distillation column etc.) using online learning resources. | CO2       |
| 3          | Demonstrate the reactor control system.                                                                                | CO2       |
| 4          | Demonstrate the operation & control scheme of a compressor.                                                            | CO3       |
| 5          | Prepare a report on any one industry.                                                                                  | CO4 and C |
| 6          | Develop some charts on hazardous area classification.                                                                  | CO6       |
| 7          | Assignment/Exercise on heat transfer unit operations- heat exchanger, boilers                                          | CO1       |
| 8          | Assignment/Exercise on heat transfer unit operations-evaporator, furnace                                               | CO1       |
| 9          | Assignment/Exercise on heat and mass transfer unit operations-Distillation, dryers                                     | CO2       |
| 10         | Assignment/Exercise on heat and mass transfer unit operations-Crystallization, reactor                                 | CO2       |
| 11         | Assignment/Exercise on miscellaneous equipment                                                                         | CO3       |
| 12         | Assignment/Exercise on hazardous area classification                                                                   | CO6       |
| 13         | Assignment/Exercise on continuous process industries                                                                   | CO4       |
| 14         | Assignment/Exercise on batch process industries                                                                        | CO5       |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

Industry visit is advised to understand the unit operations, industrial processes and their control. •

### **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

### **Term Work:**

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) : 10 Marks

Laboratory work (programs / journal) :

Attendance

5 Marks

10 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

•

Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name                  | Teaching | scheme |      | Credit as | signed       |      |       |
|-----------------|-------------------------------|----------|--------|------|-----------|--------------|------|-------|
| ISL702          | Biomedical<br>Instrumentation | Theory   | Pract. | Tut. | Theory    | Pract.       | Tut. | Total |
|                 | - Lab Practice                | -        | 2      | -    | -         |              | -    | 1     |
|                 | -                             |          | ·      | ·    | ·         | $\mathbf{C}$ |      |       |

| Sub<br>Code | Subject Name                                   | Examin  | ation schei | me   |            |              |               |      |       |
|-------------|------------------------------------------------|---------|-------------|------|------------|--------------|---------------|------|-------|
| Cour        |                                                |         |             |      |            | Term<br>work | Pract.<br>And | Oral | Total |
|             |                                                | Interna | l Assessme  | nt   | End<br>Sem |              | oral          |      |       |
|             |                                                | Test1   | Test2       | Avg. | Exam       |              | 3             |      |       |
| ISL702      | Biomedical<br>Instrumentation-<br>Lab Practice | -       | -           |      | 2          | 25           | -             | 25   | 50    |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credits                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| ISL702           | Biomedical Instrumentation- Lab Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                              |
| Course objective | <ol> <li>To make students perform experiments based on the principle and<br/>various Biomedical Instruments used for Bio-potential measurement</li> <li>To develop skills in the design of various biomedical instru-<br/>in diagnosis and life-support.</li> </ol>                                                                                                                                                                                                                                                                                                                                | nts                                                            |
| Course Outcome   | <ol> <li>Students will be able</li> <li>To measure and identify various Bio-potentials with their specific</li> <li>To observe and plot various Physiological parameters specifications.</li> <li>To measure the various cardiovascular parameters by Designing circuitry.</li> <li>To realise the circuitry of different life support instruments, like defibrillator.</li> <li>To distinguish between the various medical imaging tec comparing, principle and concept involved in each of the techniqu</li> <li>To describe the significance of electrical safety in biomedical mean</li> </ol> | with their<br>g the relate<br>e pacemaker<br>chniques b<br>ie. |

Syllabus: Same as that of Subject ISC702 Biomedical Instrumentation.

# List of Suggested Laboratory Experiments:

| Sr. No. | Detailed Content                                           | CO Mapping |
|---------|------------------------------------------------------------|------------|
| 1       | Demonstration and working of instruments like ECG and PCG. | CO1        |

| 2  | Demonstration and working of instruments like EMG and EEG.                                     | CO1 |
|----|------------------------------------------------------------------------------------------------|-----|
| 3  | Study of electrodes for various biomedical applications.                                       | CO1 |
| 4  | To measure Blood pressure by indirect method.                                                  | CO2 |
| 5  | To study Pacemaker and various waveforms or Design and implement pacemaker circuit.            | CO4 |
| 6  | To study Defibrillator and voltage waveforms or Design and implement<br>Defibrillator circuit. | CO4 |
| 7  | Design of ECG amplifier and testing of gain frequency response with weak input signal.         | CO3 |
| 8  | To design and implement ECG signal conditioning circuits with different parameter.             | CO3 |
| 9  | To design and implement EMG Quantification circuit.                                            | CO2 |
| 10 | To study Hemodialysis, Heart/Lung machine based models.                                        | CO4 |
| 11 | ECG simulation on PC / Microcontroller.                                                        | CO3 |
| 12 | Study of working of pulse oxymeter / Heart rate meter.                                         | CO3 |
| 13 | To study respiration rate meter / respiration parameter measurement.                           | CO2 |
| 14 | Study on Medical Imaging Techniques                                                            | CO5 |
| 15 | Study on Electrical Safety                                                                     | CO6 |

Any other additional experiment based on syllabus which will help students to understand topic/concept

# **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

### Term Work:

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/Assignments) : 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name              | Teaching scheme    |        |      | Credit assigned |        |      |       |
|-----------------|---------------------------|--------------------|--------|------|-----------------|--------|------|-------|
| ISL703          | Industrial<br>Automation- | Theory             | Pract. | Tut. | Theory          | Pract. | Tut. | Total |
|                 | Lab Practice              | -                  | 02     | -    | -               | 1      | -    | 1     |
|                 |                           |                    |        |      |                 |        |      |       |
|                 |                           | Examination scheme |        |      |                 |        |      |       |
|                 |                           |                    |        |      |                 |        |      |       |

|             |                                           | Examination scheme |           |                |                    |              |                       |      |       |  |  |
|-------------|-------------------------------------------|--------------------|-----------|----------------|--------------------|--------------|-----------------------|------|-------|--|--|
| Sub<br>Code | Subject Name                              | Inter<br>Test1     | nal Asses | ssment<br>Avg. | End<br>sem<br>exam | Term<br>work | Pract.<br>And<br>oral | Oral | Total |  |  |
| ISL703      | Industrial<br>Automation-<br>Lab Practice | -                  | -         | -              | 0                  | 25           | 2                     | 25   | 50    |  |  |

| Subject Code     | Subject Name                                                      | Credits                                                        |  |  |  |  |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|
| ISL703           | Industrial Automation -Lab Practice                               | 1                                                              |  |  |  |  |
| Course objective | 1. To give the students fundamentals of automation a              | nd various                                                     |  |  |  |  |
|                  | automation systems used in industry such as PLC, DCS, and         | d SCADA.                                                       |  |  |  |  |
|                  | 2. To impart the knowledge about the architecture, working        | ng of PLC,                                                     |  |  |  |  |
|                  | DCS and SCADA                                                     |                                                                |  |  |  |  |
|                  | 3. To make the students capable to apply knowledge to identif     | fy hardware                                                    |  |  |  |  |
|                  | and software requirements of PLC, DCS and SCADA                   | -                                                              |  |  |  |  |
|                  | 4. To give the students a comprehension of the aspects relate     | ed to Safety                                                   |  |  |  |  |
|                  | Instrumented system (SIS).                                        | -                                                              |  |  |  |  |
| Course Outcome   | The students will be able to                                      |                                                                |  |  |  |  |
|                  | 1. Describe automation, need, importance and applications in      | industry.                                                      |  |  |  |  |
|                  | 2. Identify components of PLC, and develop PLC la                 | dder using                                                     |  |  |  |  |
|                  | instructions of PLC and design PLC based application              | instructions of PLC and design PLC based application by proper |  |  |  |  |
|                  | selection and sizing criteria                                     |                                                                |  |  |  |  |
|                  | 3. Explain evolution and architecture of DCS, hierarchical        | control in                                                     |  |  |  |  |
|                  | DCS, programming DCS through Function Block Diag                  | ram (FBD)                                                      |  |  |  |  |
|                  | method.                                                           |                                                                |  |  |  |  |
|                  | 4. Describe SCADA architecture, communication in SC               | CADA and                                                       |  |  |  |  |
|                  | develop any application based on SCADA along with                 | GUI using                                                      |  |  |  |  |
|                  | SCADA software.                                                   |                                                                |  |  |  |  |
|                  | 5. Explain database and alarm management system                   |                                                                |  |  |  |  |
|                  | 6. Recognize the need of SIS and describe risk reduction methods. | hods.                                                          |  |  |  |  |

Syllabus: Same as that of Subject ISC703 Industrial Automation.

### List of Laboratory Experiments/Assignments:

| Sr.<br>No. | Detailed Content                                                                                             | CO Mapping |
|------------|--------------------------------------------------------------------------------------------------------------|------------|
| 1.         | Processing of sensor signals by the PLC to drive various end effectors such as pneumatic/electric/hydraulic. | CO2        |
| 2.         | PLC programs for process control applications (minimum 4 nos)                                                | CO2        |
| 3.         | DCS programming using Function block diagram method                                                          | CO3        |
| 4.         | GUI development for any one application using SCADA software.                                                | CO4        |
| 5.         | Assignment/Exercise based on Automation Fundamentals                                                         | CO1        |
| 6.         | Assignment/Exercise based on DCS                                                                             | CO3        |
| 7.         | Assignment /Exercise based on SCADA                                                                          | CO4        |
| 8.         | Assignment/Exercise based on Database and Alarm management                                                   | C05        |
| 9.         | Assignment/Exercise based on Safety Instrumented System                                                      | CO6        |

Any other additional experiment based on syllabus which will help students to understand topic/concept

### **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

### Term Work:

Term work shall consist of minimum 4 experiments and 4 assignments.

The distribution of marks for term work shall be as follows:

- Laboratory work (Experiments/Assignments): 10 Marks
- Laboratory work (programs / journal) : 10 Marks
- Attendance : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name               | Teaching scheme |        |      | Credit assigned |        |      |       |  |
|-----------------|----------------------------|-----------------|--------|------|-----------------|--------|------|-------|--|
|                 | Image                      | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |
| ISL704          | Processing-Lab<br>Practice | -               | 2      | -    | -               | 1      |      | 1     |  |

| Sub    | Subject Name   | Exami               |       |      |         |      |        |      |       |
|--------|----------------|---------------------|-------|------|---------|------|--------|------|-------|
| Code   |                |                     |       |      | 1       | Term | Pract. | Oral | Total |
|        |                | Internal Assessment |       |      | End sem | work | and    |      |       |
|        |                |                     |       |      | Exam    |      | Oral   |      |       |
|        |                | Test1               | Test2 | Avg. |         |      |        |      |       |
| ISL704 | Image          | -                   | -     | -    |         | 25   |        | 25   | 50    |
|        | Processing-Lab |                     |       |      |         |      |        |      |       |
|        | Practice       |                     |       |      |         |      |        |      |       |
|        |                |                     |       |      |         |      |        |      |       |

|                          |                                                                               | 1.              |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| Subject Code             | Subject Name                                                                  | credits         |  |  |  |  |  |  |  |
| ISL704                   | Image Processing-Lab Practice                                                 | 1               |  |  |  |  |  |  |  |
| <b>Course objectives</b> | 1. Familiarize with computer simulation software for Image pro                | cessing and its |  |  |  |  |  |  |  |
|                          | analysis and basic Image operations.                                          |                 |  |  |  |  |  |  |  |
|                          | 2. To Study the Fourier and Cosine transformation of images in the simulation |                 |  |  |  |  |  |  |  |
|                          | platform and display the result                                               |                 |  |  |  |  |  |  |  |
|                          | 3. Write advanced image processing algorithms such as Image enhancement       |                 |  |  |  |  |  |  |  |
|                          | Image restoration by using computer simulations.                              |                 |  |  |  |  |  |  |  |
|                          | 4. Develop program for extract the features of images by segmenta             | ation and image |  |  |  |  |  |  |  |
|                          | morphology.                                                                   |                 |  |  |  |  |  |  |  |
|                          |                                                                               |                 |  |  |  |  |  |  |  |
| Course                   | Students will be able to -                                                    |                 |  |  |  |  |  |  |  |
| Outcomes                 |                                                                               |                 |  |  |  |  |  |  |  |
|                          | 1. Simulate various operations on Images.                                     |                 |  |  |  |  |  |  |  |
|                          | 2. Perform Discrete Fourier transform and Discrete Cosine transform           | n on Image.     |  |  |  |  |  |  |  |
|                          | 3. Perform Image enhancement techniques.                                      |                 |  |  |  |  |  |  |  |
|                          | 4. Perform morphological operations on images and display the resu            | ılt.            |  |  |  |  |  |  |  |
|                          | 5. Implement Image compression techniques.                                    |                 |  |  |  |  |  |  |  |
|                          | 6. Implement restoration techniques on degraded images.                       |                 |  |  |  |  |  |  |  |

Syllabus same as that of subject ISDLO7031 Image Processing

# List of Laboratory Experiments:

| Sr. No. | <b>Detailed Contents</b>                                                                                                                    | CO      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|
|         |                                                                                                                                             | mapping |
| 1       | Basic Image operations such as Reading, Displaying, Writing, Flipping,<br>Cropping Images. Introduction to M file, Basic Matrix operations. | C01     |
| 2       | Spatial transformation of images like Translation, Rotation and Scaling.                                                                    | CO1     |
| 3       | Compute and visualize 2-D DFT, DCT of Images.                                                                                               | CO2     |

| 4  | Point processing operations like Image negative, brightness adjustment, contrast stretching, Threshold, Log transformation, Power law transformations, Gray level slicing with or without background. | CO3 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5  | Image Enhancement techniques by arithmetic and logic operations.                                                                                                                                      | CO3 |
| 6  | Generate and plot Image Histogram and Histogram Equalization.                                                                                                                                         | CO4 |
| 7  | Image Analysis and interpret the result by using Spatial filter.                                                                                                                                      | CO5 |
| 8  | Image smoothing and Sharpening in frequency domain.                                                                                                                                                   | CO5 |
| 9  | Implementing Image acquisition and degradation process by different noises and                                                                                                                        | CO5 |
| 10 | Edge detection by using Robert operator, Prewitt operator, Sobel operator and compare the result.                                                                                                     | CO6 |
| 11 | Morphological operation of Images like Dilation, Erosion, Opening, Closing,<br>Boundary Detection.                                                                                                    | CO6 |
| 12 | Image segmentation such as point, line, edge detection.                                                                                                                                               | CO6 |

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Students can use any Computer simulation software programing platform like MATLAB/SCILAB.

#### **Oral Examination:**

Oral examination will be based on entire syllabus.

#### **Term Work:**

Term work shall consist of Eight experiments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments)       | : 10 Marks |
|-------------------------------------|------------|
| Laboratory work (programs /journal) | : 10 Marks |
| Attendance                          | : 5 Marks  |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name                  | Teaching scheme |        |      | Credit assigned |        |      |       |  |
|-----------------|-------------------------------|-----------------|--------|------|-----------------|--------|------|-------|--|
| ISL704          | Digital Control<br>System-Lab | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |
|                 | Practice                      | -               | 2      | -    | -               | 1      | -    | 1     |  |
|                 |                               |                 |        |      |                 |        |      |       |  |
|                 |                               |                 |        |      |                 |        |      |       |  |

|        |                                            | Examination scheme  |       |      |                   |      |             |      |       |  |
|--------|--------------------------------------------|---------------------|-------|------|-------------------|------|-------------|------|-------|--|
| Sub    |                                            |                     |       |      | 1                 | Term | Pract.      |      |       |  |
| Code   | Subject Name                               | Internal Assessment |       |      | End sem<br>Exam 🍙 | work | and<br>Oral | Oral | Total |  |
|        |                                            | Test1               | Test2 | Avg. |                   |      |             |      |       |  |
| ISL704 | Digital Control<br>System- Lab<br>Practice | -                   | -     | -    | Q                 | 25   |             | 25   | 50    |  |
|        |                                            |                     |       |      |                   |      |             |      |       |  |

| Subject Code     | Subject Name                                                            | Credits     |  |  |  |  |  |  |
|------------------|-------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
| ISL704           | Digital Control System-Lab Practice                                     | 1           |  |  |  |  |  |  |
| Course objective | 1. The students should be able to determine response of ZOH and F       | )H          |  |  |  |  |  |  |
| course objective | 2. The students should be able to descretize continuous data system.    |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  | 3. The students will be able to represent given system into different c |             |  |  |  |  |  |  |
|                  | form.                                                                   |             |  |  |  |  |  |  |
|                  | 4. The students should able to determine state transition matrix        |             |  |  |  |  |  |  |
|                  | 5. Students can be able to design controller and observer               |             |  |  |  |  |  |  |
| Course Outcome   | Students will be able to -                                              |             |  |  |  |  |  |  |
|                  | 1.Understand the difference in response with reconstruction due to      | ZOH and     |  |  |  |  |  |  |
|                  | FOH.                                                                    |             |  |  |  |  |  |  |
|                  | 2. Discretize the analog systems and signals with different methods     |             |  |  |  |  |  |  |
|                  | 3. Design controller and observer for the given system.                 |             |  |  |  |  |  |  |
|                  | 4. Demonstrate their knowledge to obtain different canonical forms a    | nalytically |  |  |  |  |  |  |
|                  | and verify using simulation software.                                   |             |  |  |  |  |  |  |
|                  | 5. Determine state transition matrix using simulation software and      | verify the  |  |  |  |  |  |  |
|                  | results analytically                                                    | 1           |  |  |  |  |  |  |
|                  | 6. Measure and record the experimental data, analyze the results, and   | i prepare a |  |  |  |  |  |  |
|                  | formal laboratory report.                                               |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |
|                  |                                                                         |             |  |  |  |  |  |  |

#### Syllabus same as that of subject ISDLO7032 Digital Control System

#### List of Laboratory Experiments:

| Sr. No. | Detailed Contents                                                                                                                                                                                   | CO<br>Mapping |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|         | To determine response of zero order hold and first order hold using simulation software                                                                                                             | CO1           |
|         | Mapping from S- plane to Z-plane analytically and verification using simulation software                                                                                                            | CO2           |
|         | Discretization of continuous data system using i) Step invariance method, ii) Impulse invariance method, and iii) Bilinear transformations, analytically and verification using simulation software | CO3           |
| 4       | To represent given system in different canonical forms, analytically and verification using simulation software                                                                                     | CO4           |
| 5       | To determine pulse transfer function of a given system analytically and its verification using simulation software                                                                                  | CO4,CO6       |
|         | Determination of state transition matrix analytically and its verification using simulation software                                                                                                | CO5,CO6       |
| 7       | To check controllability and observability of a given system analytically and verify the result using simulation software.                                                                          | CO3,CO6       |
| 8       | To design the controller by any method                                                                                                                                                              | CO3           |
| 9       | To design an observer by any method                                                                                                                                                                 | CO3           |

Any other additional experiments based on syllabus which will help students to understand topic/concept.

Note: Student can use simulation software such as MATLAB, MATHCAD, SCILAB or any other open source software.

#### **Oral Examination:**

Oral examination will be based on entire syllabus

#### **Term Work:**

Term work shall consist of **<u>Eight</u>** experiments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments)       | : 10 Marks |
|-------------------------------------|------------|
| Laboratory work (programs /journal) | : 10 Marks |
| Attendance                          | : 5 Marks  |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>Code | Subject Name                | Teaching Scheme |        |      | Credits Assigned |        |      |       | 0 |
|-----------------|-----------------------------|-----------------|--------|------|------------------|--------|------|-------|---|
| ISL704          | Advanced<br>Microcontroller | Theory          | Pract. | Tut. | Theory           | Pract. | Tut. | Total |   |
|                 | Systems- Lab<br>Practice    | -               | 2      | -    | -                | 1      | -    | 1     |   |

| Code   |                 |        | nation sch |      |      |      |       |      | <u> </u> |
|--------|-----------------|--------|------------|------|------|------|-------|------|----------|
| Coue   |                 |        | l Assessm  | lent | End  | Term | Pract | Oral | Total    |
|        |                 | Test 1 | Test 2     | Avg. | Sem  | work | and   |      |          |
|        |                 |        |            |      | Exam |      | Oral  |      |          |
| ISL704 | Advanced        | -      | -          | -    | -    | 25   | -     | 25   | 5        |
|        | Microcontroller |        |            |      |      |      |       |      |          |
|        | Systems- Lab    |        |            |      |      |      |       |      |          |
|        | Practice        |        |            |      |      |      |       |      |          |
|        |                 |        |            |      | •    |      |       |      |          |

| Subject Code      | Subject Name Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISL704            | Advanced Microcontroller Systems- Lab Practice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course objectives | <ol> <li>To explain the fundamentals of PIC 18F Microcontroller and working of the system.</li> <li>To discuss and explain the integrated hardware of the PIC 18F Microcontroller</li> <li>To illustrate various programming tools and development of software using assembly and higher level language.</li> <li>To examine and design, interfacing of PIC 18F Microcontroller with different peripheral devices such as LCD, keyboard, ADC, DAC etc.</li> <li>To design applications using learned concepts of hardware, software and interfacing.</li> <li>To describe the working of RTOS and related tasks.</li> </ol> |
| Course Outcomes   | <ol> <li>The students will be able to:         <ol> <li>Simulate, Analyze and develop programs using assembly language.</li> <li>Simulate, Analyze and develop programs using embedded C</li> <li>Develop program to use PIC18 integrated peripherals.</li> <li>Design and Develop programs for interfacing of external peripheral components with PIC 18F Microcontroller.</li> <li>Design and develop sophisticated application using the PIC18 integrated peripherals and external peripherals</li> <li>Show the uses and features of RTOS</li> </ol> </li> </ol>                                                        |

9

Syllabus: Same as that of Subject ISDL07033 Advanced Microcontroller Systems.

## List of Laboratory Experiments/ Assignments:

| Sr. No. | Detailed Content                                                                    | CO Mapping |
|---------|-------------------------------------------------------------------------------------|------------|
| 1.      | To develop assembly program                                                         | CO1        |
| 2.      | To develop embedded C program                                                       | CO2        |
| 3.      | To develop a program for generating square wave on port pin with and without timer. | CO3        |
| 4.      | To develop a program for interfacing 7 segments displays with PIC18                 | CO4        |
| 5.      | To develop a program for interfacing LCD display with PIC18                         | CO4        |
| 6.      | To develop a program for interfacing keyboard with PIC18                            | CO4        |
| 7.      | To develop a program for Serial Communication with PC.                              | CO3        |

| 8.  | To develop a program for interfacing DAC and its application.   | CO4 |
|-----|-----------------------------------------------------------------|-----|
| 9.  | To develop a program for implementing RTC.                      | CO3 |
| 10. | To develop a program for Speed control of DC Motor              | CO5 |
| 11. | To develop a program for temperature measurement.               | C05 |
| 12. | To develop a program for Stepper motor control                  | C05 |
| 13. | To develop a program for implementing PID controller.           | C05 |
| 14. | Assignment on understanding operation of integrated peripherals | CO5 |
| 15. | Case study on various types of RTOS                             | CO6 |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

#### **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### **Term Work:**

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments): 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance

: 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

| Sub<br>code | Subject Name | Teachin | g Scheme | (Hrs) | Credits Assigned |        |      |       |
|-------------|--------------|---------|----------|-------|------------------|--------|------|-------|
| ISL704      | Mechatronics | Theory  | Pract.   | Tut.  | Theory           | Pract. | Tut. | Total |
|             |              | -       | 2        | -     | -                | 1      | -    |       |
|             |              |         |          |       |                  |        |      |       |

|        | Subject Name | Examination Scheme                 |        |      |             |            |     |                       |      |       |
|--------|--------------|------------------------------------|--------|------|-------------|------------|-----|-----------------------|------|-------|
| Sub    |              | Theory(out of 100)                 |        |      |             | 5          |     | Ducat                 |      |       |
| code   |              | Internal Assessment<br>(out of 20) |        |      | End<br>Sem. | Theory     |     | Pract.<br>And<br>Oral | Oral | Total |
|        |              | Test 1                             | Test 2 | Avg. | Exam        |            |     | Ulai                  |      |       |
| ISL704 | Mechatronics | -                                  | -      | -    | -           | 25         | N N |                       | 25   | 50    |
|        |              |                                    |        | 7    |             | $\bigcirc$ |     |                       |      |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                          | Credits                                                 |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| ISL704            | Mechatronics Lab                                                                                                                                                                                                                                                                                                                                      | 1                                                       |  |  |  |  |
| Course Objectives | <ol> <li>To present architecture of the mechatronics system design</li> <li>To study on broad spectrum the characteristics of the mechanical and<br/>electrical actuators and their selection for mechatronic systems.</li> <li>Development of process plan and templates for design of mechatronic<br/>systems.</li> </ol>                           |                                                         |  |  |  |  |
| Course Outcomes   | <ul> <li>The students will be able to</li> <li>1. Apply the concept of system modelin</li> <li>2. Calculate performance characteristic</li> <li>3. Learn the working of actuators for a</li> <li>4. Design feedback and intelligent cont</li> <li>5. Describe mechatronics system valida</li> <li>6. Integrate the components in mechatron</li> </ul> | s of sensors<br>mechatronic system.<br>rollers<br>ttion |  |  |  |  |

Syllabus: Same as that of Subject ISDLO7034 Mechatronics.

### List of Laboratory Experiments/ Assignments:

| Sr.<br>No. | Detailed Content                                                                                                                      | CO Mapping |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1          | Modeling and simulation of basic electrical, hydraulic and pneumatic systems using any virtual instrumentation software like LabVIEW. | CO1        |
| 2          | Calculate static and dynamic characteristics of position/force/tactile sensors                                                        | CO2        |
| 3          | Design of circuits with logic sequence using Electro pneumatic trainer kits.                                                          | CO3        |
| 4          | Simulation of basic Hydraulic, Pneumatic and Electric circuits using any software                                                     | CO3        |

| 5  | Electro pneumatic applications using PLC                                                                 | CO3 |   |
|----|----------------------------------------------------------------------------------------------------------|-----|---|
|    |                                                                                                          |     |   |
| 6  | Speed Control of AC & DC drives                                                                          | CO3 |   |
| 7  | Servo controller interfacing for DC motor                                                                | CO4 |   |
| 8  | PID controller interfacing                                                                               | CO4 | • |
| 9  | Implementation of fuzzy controller for level or temperature control                                      | CO4 |   |
| 10 | Stepper motor interfacing with Micro controller (i) Full step resolution (ii) half step resolution       | CO4 |   |
| 11 | Assignment on Components based modular design and system validation                                      | CO5 |   |
| 12 | Computerized data logging system with control for process variables like pressure, flow and temperature. | CO6 |   |
| 13 | Case study on any one mechatronics system                                                                | CO6 |   |

Any other additional experiments / case studies based on syllabus which will help students to understand topic/concept.

\*\*Industry visit is advised to understand the Mechatronics subject.

#### **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### Term Work:

Term work shall consist of minimum seven experiments and 01 case study.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignmen | ts): 10 Marks |
|----------------------------------------|---------------|
| Laboratory work (programs / journal)   | : 10 Marks    |
| Attendance                             | : 5 Marks     |
|                                        | 1 .1          |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work

| Subject<br>Code | Subject<br>Name         | Teaching Scheme    |       |  | Credits Assigned |        |      |       |
|-----------------|-------------------------|--------------------|-------|--|------------------|--------|------|-------|
| ISL704          | Building<br>Automation- | Theory Pract. Tut. |       |  | Theory           | Pract. | Tut. | Total |
|                 | Lab Practice            | -                  | - 2 - |  |                  | 1      | -    | 1     |

| Sub    | Subject Name | Examination scheme |                     |      |      |      |        |      |       |
|--------|--------------|--------------------|---------------------|------|------|------|--------|------|-------|
| Code   |              | Intern             | Internal Assessment |      |      | Term | Pract. | Oral | Total |
|        |              | Test 1             | Test 2              | Avg. | Sem  | work | and    |      |       |
|        |              |                    |                     | U    | Exam |      | Oral   |      |       |
| ISL704 | Building     | -                  | -                   | -    | -    | 25   |        | 25   | 50    |
|        | Automation-  |                    |                     |      |      |      |        |      |       |
|        | Lab Practice |                    |                     |      |      |      |        |      |       |
|        |              |                    |                     |      |      |      |        |      |       |

| Subject Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subject Name credits                                                                                                                                                                                                                                                                                                                                                                                                                        |            |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|
| ISL704                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Building Automation Lab Practice                                                                                                                                                                                                                                                                                                                                                                                                            | 1          |  |  |  |  |  |  |  |
| Course objectives       1. To brief students with origin and evolution of building automation.         2. To train them with architecture and operation of BAS.         3. To facilitate them for designing automation system for intelligent building.         4. Develop technique for preparation of various documents required for design requirement of safety building.         The students will be able to:         1. Explain the concept of intelligent building and BAS |                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |  |  |  |  |  |  |  |
| Course Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>The students will be able to:</li> <li>Explain the concept of intelligent building and BAS.</li> <li>Select the hardware and design of HVAC in building automatic</li> <li>Discuss the concept of energy management system.</li> <li>Design and implement the safety system for building.</li> <li>Design security and video management system for building.</li> <li>Design and integrate the different system in BAS.</li> </ol> | on system. |  |  |  |  |  |  |  |

Syllabus: Same as that of Subject ISDLO7035 Building Automation.

## List of Laboratory Experiments/ Assignments:

| S<br>N | Detailed Content                                        | CO<br>Mapping |
|--------|---------------------------------------------------------|---------------|
| 1      | Assignment on intelligent building.                     | CO1           |
| 2      | Assignment on BAS.                                      | CO1           |
| 3      | Assignment on HVAC.                                     | CO2           |
| 4      | Assignment on Direct Digital Control of an HVAC system. | CO2           |

| 5  | Assignment on BACnet and its features.                       | CO2      |  |
|----|--------------------------------------------------------------|----------|--|
| 6  | Assignment on lighting- control systems.                     | CO3      |  |
| 7  | Assignment on fire alarm systems.                            | CO4      |  |
| 8  | Assignment on access Control System.                         | CO5      |  |
| 9  | Assignment on CCTV systems.                                  | CO5      |  |
| 10 | Assignment on building system integration.                   | CO6      |  |
| 11 | Case study – Intelligent building of hospital/hotel/airport. | CO1, CO2 |  |

Any other experiments/assignments based on syllabus which will help students to understand topic/concept.

• Visit to intelligent building of hotel/hospital/airport is advised to understand the Building Automation subject.

#### **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### Term Work:

Term work shall consist of minimum four experiments and four assignments. The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignment | s) | : 10 | Marks |
|-----------------------------------------|----|------|-------|
| Laboratory work (programs / journal)    | :  | 10   | Marks |
| Attendance                              | :  | 5 M  | arks  |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject<br>Name | Teaching | g scheme | :    | Credit a | ssigned |      |       |
|-----------------|-----------------|----------|----------|------|----------|---------|------|-------|
| ISL705          | Project-I       | Theory   | Pract.   | Tut. | Theory   | Pract.  | Tut. | Total |
|                 |                 | -        | 6        | -    | -        | 3       | -    | 3     |
|                 |                 |          |          |      |          | I.      |      |       |

| Sub    | Subject   | Examina  | ation sche  | me   |      |      |       |      |       |
|--------|-----------|----------|-------------|------|------|------|-------|------|-------|
| Code   | Name      | Theory   | (out of 100 | ))   |      | Term | Pract | Oral | Total |
|        |           | Internal | Assessme    | ent  | End  | work | . and |      |       |
|        |           | Test1    | Test2       | Avg. | sem  |      | Oral  |      |       |
|        |           |          |             |      | Exam |      |       |      |       |
| ISL705 | Project-I | -        | -           | -    | -    | 50   | -     | 50   | 100   |

#### **Term Work:**

The final year students have already under gone project assignment in their third year in Mini Project I and II. In final year, group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or externally assigned by the research institutes and industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in third year.

The main intention of project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and/or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

| Subject<br>code | Subject Name    | Teac   | hing sche | eme  |        | Credit a | ssigned |       |
|-----------------|-----------------|--------|-----------|------|--------|----------|---------|-------|
|                 | Instrumentation | Theory | Pract.    | Tut. | Theory | Pract.   | Tut.    | Total |
| ISC801          | Project         |        |           |      |        |          |         |       |
| 150001          | Documentation   | 4      | -         | -    | 4      | -        | -       | 4     |
|                 | and Execution   |        |           |      |        |          |         |       |

| Subject<br>code | Subject Name    | Tea    | ching sche | eme       |                    | Cı           | edit assig  | ned  |       |
|-----------------|-----------------|--------|------------|-----------|--------------------|--------------|-------------|------|-------|
|                 | Instrumentation | Theory | Pract.     | Tut.      | Theor              | ry Pr        | act. 🧾      | Гut. | Total |
| ISC801          | Project         |        |            |           |                    |              |             |      |       |
| 100001          | Documentation   | 4      | -          | -         | 4                  |              |             | -    | 4     |
|                 | and Execution   |        |            |           |                    |              |             |      |       |
|                 |                 |        |            |           |                    | (            |             |      | .O    |
|                 |                 |        |            | E         | xaminati           | on schen     | ne          |      |       |
|                 |                 | Г      | heory (ou  | t of 100) | )                  |              | Pract.      |      |       |
| Subject<br>Code | Subject Name    | Intern | al Assessr | nent      | End<br>sem<br>Exam | Term<br>work | and<br>Oral | Oral | Total |
|                 |                 | Test1  | Test2      | Avg.      |                    |              |             |      |       |
|                 | Instrumentation |        |            |           |                    |              |             |      |       |
| ISC801          | Project         | 20     | 20         | 20        | 80                 |              | _           | _    | 100   |
| 150.001         | Documentation   | 20     | 20         | 20        |                    |              |             |      | 100   |
|                 | and Execution   |        |            |           |                    |              |             |      |       |

| Code       Instrumentation Project Documentation and Execution       4         ISC801       Instrumentation Project Documentation and Execution       4         Course objective       1. To provide knowledge of Instrumentation Project & Detailed Engineering techniquess in the EPC Consultancy.       2. To make the students capable of executing Project Deliverables and Engineering activities of Project Documentation.         Course Outcome       The students will able to:       1. Interpret types of project and execute it by knowing relationship between customer, designer and constructor.       2. Use standards in instrumentation project.       3. Design engineering documents such as loop diagram, hook-up, JB schedule.         4. Develop and test system integration.       5. Schedule and evaluate activities like procurement, commissioning, installation.         6. Support and evaluate documentation software packages used in industry.       10 | ISC801       Instrumentation Project Documentation and Execution         Course<br>objective       1. To provide knowledge of Instrumentation Project & Detailed Engineering to<br>in the EPC Consultancy.         2. To make the students capable of executing Project Deliverables and En<br>activities of Project Documentation.         Course<br>Outcome       The students will able to:<br>1. Interpret types of project and execute it by knowing relationship between<br>designer and constructor.         2. Use standards in instrumentation project.       3. Design engineering documents such as loop diagram, hook-up, JB schedule<br>4. Develop and test system integration.         5. Schedule and evaluate activities like procurement, commissioning, installati | Credits   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| objective       in the EPC Consultancy.         2. To make the students capable of executing Project Deliverables and Engineering activities of Project Documentation.         Course       The students will able to:         0utcome       1. Interpret types of project and execute it by knowing relationship between customer, designer and constructor.         2. Use standards in instrumentation project.       3. Design engineering documents such as loop diagram, hook-up, JB schedule.         4. Develop and test system integration.       5. Schedule and evaluate activities like procurement, commissioning, installation.                                                                                                                                                                                                                                                                                                                                             | objective       in the EPC Consultancy.         2. To make the students capable of executing Project Deliverables and En activities of Project Documentation.         Course       The students will able to:         Outcome       1. Interpret types of project and execute it by knowing relationship between designer and constructor.         2. Use standards in instrumentation project.       3. Design engineering documents such as loop diagram, hook-up, JB schedule         4. Develop and test system integration.       5. Schedule and evaluate activities like procurement, commissioning, installation                                                                                                                                                             | 4         |
| <ul> <li>2. To make the students capable of executing Project Deliverables and Engineering activities of Project Documentation.</li> <li>Course Outcome</li> <li>The students will able to:         <ol> <li>Interpret types of project and execute it by knowing relationship between customer, designer and constructor.</li> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule.</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation.</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>To make the students capable of executing Project Deliverables and Enactivities of Project Documentation.</li> <li>The students will able to:         <ol> <li>Interpret types of project and execute it by knowing relationship between designer and constructor.</li> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation</li> </ol> </li> </ol>                                                                                                                                                                                                         | chniques  |
| Course Outcome       The students will able to:         1. Interpret types of project and execute it by knowing relationship between customer, designer and constructor.         2. Use standards in instrumentation project.         3. Design engineering documents such as loop diagram, hook-up, JB schedule.         4. Develop and test system integration.         5. Schedule and evaluate activities like procurement, commissioning, installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Course<br>Outcome       The students will able to:         1. Interpret types of project and execute it by knowing relationship between designer and constructor.         2. Use standards in instrumentation project.         3. Design engineering documents such as loop diagram, hook-up, JB schedule         4. Develop and test system integration.         5. Schedule and evaluate activities like procurement, commissioning, installation                                                                                                                                                                                                                                                                                                                                  |           |
| Course<br>Outcome       The students will able to:         1. Interpret types of project and execute it by knowing relationship between customer,<br>designer and constructor.         2. Use standards in instrumentation project.         3. Design engineering documents such as loop diagram, hook-up, JB schedule.         4. Develop and test system integration.         5. Schedule and evaluate activities like procurement, commissioning, installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Course<br>Outcome       The students will able to:         1. Interpret types of project and execute it by knowing relationship between<br>designer and constructor.         2. Use standards in instrumentation project.         3. Design engineering documents such as loop diagram, hook-up, JB schedule         4. Develop and test system integration.         5. Schedule and evaluate activities like procurement, commissioning, installation                                                                                                                                                                                                                                                                                                                               | gineering |
| <ol> <li>Outcome         <ol> <li>Interpret types of project and execute it by knowing relationship between customer, designer and constructor.</li> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule.</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation.</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Outcome</li> <li>1. Interpret types of project and execute it by knowing relationship between designer and constructor.</li> <li>2. Use standards in instrumentation project.</li> <li>3. Design engineering documents such as loop diagram, hook-up, JB schedule</li> <li>4. Develop and test system integration.</li> <li>5. Schedule and evaluate activities like procurement, commissioning, installation</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |           |
| <ul> <li>Outcome</li> <li>1. Interpret types of project and execute it by knowing relationship between customer, designer and constructor.</li> <li>2. Use standards in instrumentation project.</li> <li>3. Design engineering documents such as loop diagram, hook-up, JB schedule.</li> <li>4. Develop and test system integration.</li> <li>5. Schedule and evaluate activities like procurement, commissioning, installation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ol> <li>Outcome         <ol> <li>Interpret types of project and execute it by knowing relationship between designer and constructor.</li> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation</li> </ol> </li> </ol>                                                                                                                                                                                                                                                                                                                                               |           |
| <ol> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule.</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ol> <li>Use standards in instrumentation project.</li> <li>Design engineering documents such as loop diagram, hook-up, JB schedule</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | customer, |
| <ol> <li>Design engineering documents such as loop diagram, hook-up, JB schedule.</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ol> <li>Design engineering documents such as loop diagram, hook-up, JB schedule</li> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| <ol> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ol> <li>Develop and test system integration.</li> <li>Schedule and evaluate activities like procurement, commissioning, installation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 5. Schedule and evaluate activities like procurement, commissioning, installation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5. Schedule and evaluate activities like procurement, commissioning, installati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| 6. Support and evaluate documentation software packages used in industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6. Support and evaluate documentation software packages used in industry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on.       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |

### **Details of Syllabus:**

**Prerequisite:** Knowledge of standards, basics of Sensor, transducer, process loops, control valve.

| Module | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hrs | CO<br>Mapping |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | The Project and Project Team: Introduction, Types of project,<br>constraint's predictability, structure, flow and deliverables, Need and<br>techniques used for Project Planning and Scheduling, software used<br>for Project Planning and Scheduling<br>The Project Team: Customer, designer and constructor                                                                                                                                                                                                                                                                                                                                         | 10  | COI           |
| 2      | <ul> <li>Standards used in instrumentation project: ISA, ANSI, &amp; ASTM, ASME, NFPA, NEMA, SAMA.</li> <li>Engineering Documents Part-I: Need for engineering document, general guidelines for development of document, project stage, purpose, scope, contents, references for document, team of creation and users.</li> <li>1) Process Flow Diagram (PFD) and Material Balance Sheet (MBS)</li> <li>2) Piping and Instrumentation diagrams (P&amp;ID) – practical applications.</li> <li>3) Instrument Index Sheet</li> <li>4) Instrument specifications sheet- for temperature, pressure, level, flow instruments and control valves.</li> </ul> | 08  | CO2           |
| 3      | <ul> <li>Engineering Documents Part-II</li> <li>1) Loop diagrams- pneumatic, electronic and digital data types.</li> <li>2) Instrument Location Plan</li> <li>3) Cable and Tray Routing and Cable Schedule</li> <li>4) JB Schedule</li> <li>5) Air header schedule</li> <li>6) Instrument Hook- up diagrams - for control valve, transmitters (DP in liquid service, dry gas service,) Thermocouple, Temperature switch line mounted, flow transmitter, connections for air supply and output. etc.</li> <li>7) BOM for erection</li> <li>8) Logic diagrams,</li> <li>9) SAMA flow diagram</li> </ul>                                                 | 10  | CO3           |
| 4      | Systems Integration: Division of labour, control logic specification,<br>HMI specification (development of mimic and graphic), System<br>Architecture design, Network single line diagram generation, I/O<br>address assignment (Partitioning)-Hardware & software address,<br>Other tasks like -System testing, Safety Instrumented System (SIS),<br>Safety Integrated Level (SIL), control room layout design, types of<br>control system cabinet design.                                                                                                                                                                                           | 07  | CO4           |
| 5      | <ul> <li>Procurement, Installation and Commissioning:</li> <li>Procurement: Engineering Procurement procedure, PO format, preparation of tender documents, bids, technical bid evaluation.</li> <li>Installation of instruments- Installation standards (stanchion, impulse tubing, clamping) installation of instrument junction box, earthing system, cable laying (cable trays, cable types, cable glands), tubing, instrument installation guidelines (for pressure instruments, DP transmitter, temperature and flow instruments, control valve.)</li> <li>Inspection: Need for Inspection, General Inspection Guidelines</li> </ul>             | 10  | CO5           |

|   | DocumentsforInspection-Factoryacceptancetest (FAT),Siteacceptancetest (SAT).Commissioning:Pre-commissioningProcedures,stages,checkoutprocedureofcontrolvalve,DPtransmitteretc.Calibration,testingofinstruments,operationandmaintenancemanual. |    |     |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|--|
| 6 | <b>Documentation Software Packages:</b><br>Advantages of using software packages for documentation. Overview                                                                                                                                  | 03 | CO6 |  |
|   | of documentation software packages used in industry.                                                                                                                                                                                          |    |     |  |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- 1. Andrew Williams, "Applied instrumentation in the process industries", 2<sup>nd</sup> Edition, Vol. 2, Gulf publishing company, 1979.
- 2. Michael D. Whitt, "Successful Instrumentation and Control Systems Design", ISA Publication, 2012.
- 3. Installation of Instrumentation & Process control systems- EEUA Handbook, 1977.
- 4. D. N. Pawar, D. K. Nikam, Fundamentals of Project Planning and Engineering, 1<sup>st</sup> Edition, Penram International Publishing-2017.

#### **Additional References :**

- Specification forms- ISA-20-1981- ISA Publication
- Piping and Instrumentation Diagram Documentation Criteria- Process Industry
- Practices Instrumentation Design Criteria-ONGC, Mumbai
- Commissioning Procedures -ONGC, Mumbai

| Subject<br>Code | Subject Name   | Tea    | ching Sch | eme  |        | Credits A | Assigned |       |
|-----------------|----------------|--------|-----------|------|--------|-----------|----------|-------|
| ISC802          | Instrument and | Theory | Pract.    | Tut. | Theory | Pract.    | Tut.     | Total |
| 150002          | System Design  | 4      | -         | -    | 4      | - 4       |          | 4     |

|         |               |        |           | -         | Examination | n scheme |          |      | ( )   |
|---------|---------------|--------|-----------|-----------|-------------|----------|----------|------|-------|
| Subject | Subject Name  |        | Theory    | Marks(100 | )           | Term     | Pract.   |      |       |
| Code    | Subject Maine | Intern | al Assess | ment(20)  | End Sem     | work     | and Oral | Oral | Total |
|         |               | Test1  | Test2     | Avg.      | Exam        | WUIK     |          |      |       |
|         | Instrument    |        |           |           |             |          | C        | ٠    |       |
| ISC802  | and System    | 20     | 20        | 20        | 80          | -        | -        | ) -  | 100   |
|         | Design        |        |           |           |             |          |          |      |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                       | credits          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| ISC802            | Instrument and System Design                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                |
| Course objectives | <ol> <li>To impart knowledge of selection and design considerations<br/>along with its calibration techniques.</li> <li>To make the students capable of sizing the control valve.</li> <li>To impart the students' knowledge about the types, sizing of<br/>and standards.</li> <li>To make the students capable to design electronic product<br/>layout and its environment.</li> <li>To familiarize students with the concept of reliability engineer</li> </ol> | f control panels |
| Course Outcomes   | <ul> <li>The students will be able to:</li> <li>1. Select, design and calibrate transducers</li> <li>2. Select and size control valves and actuators.</li> <li>3. Apply knowledge to size the control panels.</li> <li>4. Apply knowledge to design electronic product and enclosure des</li> <li>5. Describe the terms used in Reliability engineering.</li> <li>6. Apply knowledge in designing control room layout and its environment.</li> </ul>              | ign              |

## Details of Syllabus:

Prerequisite: Knowledge of sensors, control valves, PLC and DCS.

| Module | Content                                                                                                                                                                                                                                                                                                                                                          | Hrs | CO      |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
|        |                                                                                                                                                                                                                                                                                                                                                                  |     | Mapping |
|        | <b>Design of Transducers:</b><br>An overview of static and dynamic performance characteristics of instruments.<br>Selection criteria, design considerations, calibration and installation for flow,<br>temperature, pressure and level transducers.                                                                                                              | 08  | CO1     |
| 2      | <b>Design of Control Valve:</b><br>Review of flow equations. Valve selection and sizing for liquid service, gas or vapor service, flashing liquids, Newtonian fluids and mixed phase flow, Control valve noise estimation and Control valve cavitations. Actuator sizing. Selection criteria and design consideration of safety relief valves and rupture discs. | 16  | CO2     |

| 3 | Control Panel Design:                                                              | 08 | CO3 |   |
|---|------------------------------------------------------------------------------------|----|-----|---|
|   | Panel selection-size, type, construction and IP classification, NEMA standard.     |    |     |   |
|   | GA Diagrams, Power wiring and distribution, Typical wiring diagrams for            |    |     |   |
|   | AI,DI,AO,DO,RTD, and T/C modules. Earthing scheme. Panel ventilation,              |    |     |   |
|   | cooling and illumination. Operating consoles- ergonomics. Wiring accessories-      |    |     |   |
|   | ferules, lugs, PVC ducts, spiral etc. Wire sizes and color coding. Packing,        |    |     |   |
|   | Pressurized panels- X, Y, and Z Purging for installation in hazardous areas. Ex-   |    |     | * |
|   | proof panels.                                                                      |    |     |   |
| 4 | Electronic product design:                                                         | 08 | CO4 |   |
|   | System Engineering, ergonomics, phases involved in electronic product design.      |    |     |   |
|   | Enclosure Design :                                                                 |    | •   |   |
|   | Packing and enclosures design guidelines, Grounding and shielding, front panel     |    |     |   |
|   | and cabinet design of an electronic product.                                       |    |     |   |
| 5 | Reliability engineering:                                                           | 04 | CO5 |   |
|   | Reliability concepts, causes of failures, bath tub curve, Quality and reliability, |    |     |   |
|   | MTTF, MTBF, and MTTR. Availability and Maintainability. Redundancy and             |    |     |   |
|   | redundant systems.                                                                 |    |     |   |
| 6 | Control Room Design: Layout and environment, modern control room layout            | 04 | CO6 | 1 |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- 1. Les Driskell, "Control valve sizing", ISA.
- 2. Kim R Fowler, "Electronic Instrument Design", Oxford University- 1996.
- Bela G. Liptak, "Instrument Engineer's Hand Book Process Control", Chilton Company, 3<sup>rd</sup> Edition, 1995.
- **4.** Andrew Williams, "Applied instrumentation in the process industries", 2<sup>nd</sup> Edition, Vol. 1 & 3, Gulf publishing company,1979.

- 1. Harshvardhan, "Measurement Principles and Practices", Macmillan India Ltd-1993
- 2. Balaguruswamy E, "Reliability", Tata McGraw-Hill Pub.co. New Delhi, 1999.
- Mourad Samiha & ZorianYervant," Principles of Testing Electronic Systems", New York. John Wiley & Sons, 2000.
- 4. Lewis E E," Introduction to Reliability Engineering (2nd)", New York. John Wiley & Sons, 1996.
- 5. Anand M S," Electronic Instruments and Instrumentation Technology", New Delhi. Prentice Hall of India, 2004.
- 6. Ott H W," Noise Reduction Techniques in Electronic System. ," (2) John Wiley & Sons New York, 1988.
- 7. Manual on product design: IISc C.E.D.T.
- 8. C.L.Albert and D.A. Coggan,""Fundamentals of Industrial Control", ISA, 1992.
- 9. R. W. Zape, "Valve selection hand book third edition", Jaico publishing house,2003.
- 10. Curtis Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.

| Subject<br>code | Subject<br>Name  | Tea         | ching scl | heme      |              | Credit | assigned  |            |
|-----------------|------------------|-------------|-----------|-----------|--------------|--------|-----------|------------|
| ISDLO8041       | Expert<br>System | Theory<br>4 | Pract.    | Tut.<br>- | Theory4      | Pract. | Tut.<br>- | Total<br>4 |
|                 |                  |             |           | Ē.        | amination of | hama   |           |            |

|           |          |        | Examination scheme |           |      |      |        |      |       |  |  |  |
|-----------|----------|--------|--------------------|-----------|------|------|--------|------|-------|--|--|--|
|           | Subject  |        |                    | ory (100) | 1    | T    | Pract. |      |       |  |  |  |
| Sub Code  | Name     | Intern | al Assess          | ment (20) | End  | Term | and    | Oral | Total |  |  |  |
|           | 1 (unite | Test   | Test2              | Avg.      | sem  | work | Oral   | orar | Total |  |  |  |
|           |          | 1      |                    | _         | Exam |      |        |      |       |  |  |  |
| ISDLO8041 | Expert   | 20     | 20                 | 20        | 80   | _    |        | -    | 100   |  |  |  |
|           | System   |        | _ •                |           |      |      |        |      |       |  |  |  |
|           |          |        |                    |           |      |      |        |      |       |  |  |  |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | credits   |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ISDLO801         | Expert System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         |
| Course objective | <ol> <li>To provide an understanding on the fundamentals of neura<br/>and fuzzy systems.</li> <li>To learn the different intelligent techniques for control</li> <li>To gain knowledge in Expert systems</li> <li>To gain knowledge in expertise algorithm</li> </ol>                                                                                                                                                                                                                                                 | l network |
|                  | 4. To gain knowledge in genetic algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Course Outcome   | <ol> <li>The students will able to</li> <li>Identify various networks and learning algorithms in artifinetwork (ANN).</li> <li>Define Fuzzy set, rules and membership function and also defuzzification for a given problem.</li> <li>Identify areas of application for Expert Systems.</li> <li>Apply the concepts of ANN and Fuzzy Logic in solving enproblems and implementing controllers.</li> <li>Discuss various concepts of Genetic Algorithm</li> <li>Identify various hybrid control strategies.</li> </ol> |           |

Prerequisite: Knowledge of control systems, optimization technique, expert system, Neural network and Genetic algorithm.

| Module | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hrs | CO<br>Mapping |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| 1      | Introduction to Artificial Neural Network (ANN)<br>Neuron, nerve structure and synapse –Artificial Neuron and its<br>model, activation functions, neural network architecture –Single<br>Layer Perceptron– Multi Layer Perceptron – Back propagation<br>algorithm (BPA). Supervised and Unsupervised learning.<br>Associative Networks - Hopfield networks, Boltzmann machines.                                                          | 09  | CO1           |
| 2      | Introduction to Fuzzy Logic<br>Fuzzy set theory – Fuzzy sets – Operation on Fuzzy sets – Scalar<br>cardinality, fuzzy cardinality, union and intersection, complement,<br>equilibrium points, aggregation, projection, composition,<br>decomposition, cylindrical extension, fuzzy relation – Fuzzy<br>membership functions, De- fuzzification.                                                                                          | 09  | CO2           |
| 3      | Introduction to Expert System<br>What are Expert Systems, Features of Expert System, Basic<br>activities of expert system and the areas in which they solve<br>problems, Prospector systems-features, working. Knowledge<br>representation in expert systems- using rules semantic nets, frames,<br>Types of tools available for expert system building, Stages in the<br>development of expert system tools. Building an Expert system. | 09  | CO3           |
| 4      | Neural Networks and Fuzzy Logic for Control<br>Familiarization of Neural Network Control and Fuzzy Tool Box.<br>Development of PID control using ANN and Fuzzy Logic.                                                                                                                                                                                                                                                                    | 06  | CO4           |
| 5      | Genetic Algorithm<br>Basic concept of Genetic algorithm – flow chart of GA – Genetic<br>representations – encoding – Initialization and selection, Genetic<br>operators– Mutation, Generational Cycle, applications – Concepts<br>on search techniques – Tabu search, Ant-colony search and Particle<br>Swarm Optimization (PSO).                                                                                                        | 09  | CO5           |
| 6      | Hybrid Control Schemes<br>Neuro fuzzy systems –Adaptive neuro fuzzy inference system<br>(ANFIS) – Optimization of membership function and rule base using<br>Genetic Algorithm and PSO – Case study – Introduction to Support<br>Vector Regression – Familiarization of ANFIS Tool Box.                                                                                                                                                  | 06  | CO6           |

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- 1. Stamatios V. Kartalopolous, .Understanding Neural Network and Fuzzy Logic., PHI Pvt Ltd.
- Kishan Mehrotra, .Elements of ANN., 2nd Editon, Penram International Publishing(I) Pvt.Ltd.
- 3. Donald A. Waterman, "A Guide to Expert Systems", Addison-Wesley Publishing Company
- 4. David Goldberg. V "Genetic Algorithms in Search, Optimization, and Machine Learning", Pearson Education, 2009

#### **References:**

- 1. Laurene. V, Fausett, "Fundamentals of Neural Networks, Architecture, Algorithms, and Applications", Pearson Education, 2008.
- 2. Timothy. J, Ross, "Fuzzy Logic with Engineering Applications", Wiley, Third Edition, 2010.
- 3. Zimmermann. H.J, "Fuzzy set theory-and its Applications"- Springer international edition, 2011.
- 4. Miller W.T, Sutton . R.S and Webrose . P.J, "Neural Networks for Control", MIT Press, 1996.
- 5. Kevin Night and Elaine Rich, Nair B., "Artificial Intelligence (SIE)", Mc Graw Hill-2008.
- 6. Dan W. Patterson, "Introduction to AI and ES", Pearson Education, 2007. (Unit-III).
- 7. Peter Jackson, "Introduction to Expert Systems", 3rd Edition, Pearson Education, 2007.
- 8. Stuart Russel and Peter Norvig "AI A Modern Approach", 2nd Edition, Pearson Education 2007
- 9. Deepak Khemani "Artificial Intelligence", Tata Mc Graw Hill Education 2013.
- 10. Laurance Fausett, Englewood Cliffs, N.J., 'Fundamentals of Neural Networks', Pearson Education, 1992.
- 11. Timothy J. Ross, 'Fuzzy Logic with Engineering Applications', Tata McGraw Hill, 1997.
- 12. S.N.Sivanandam and S.N.Deepa, Principles of Soft computing, Wiley India Edition, 2nd Edition, 2013
- 13. Simon Haykin, 'Neural Networks', Pearson Education, 2003.
- 14. John Yen & Reza Langari, 'Fuzzy Logic Intelligence Control & Information', Pearson

Education, New Delhi, 2003.

- 15.M.Gen and R,Cheng, Genetic algorithms and optimization, Wiley Series in Engineering Design and Automation, 2000.
- 16. Hagan, Demuth, Beale, "Neural Network Design", Cengage Learning, 2012. N.P.Padhy, "Artificial Intelligence and Intelligent Systems", Oxford, 2013.
- 17. William S.Levine, "Control System Advanced Methods," The Control Handbook CRC Press 2011.

18.http://nptel.ac.in

| Subject   | Subject Name                  | Teaching | g scheme |      | Credit as | 1      |      |       |
|-----------|-------------------------------|----------|----------|------|-----------|--------|------|-------|
| code      |                               |          |          |      |           |        |      |       |
| ISDLO8042 | <b>Optimal Control System</b> | Theory   | Pract.   | Tut. | Theory    | Pract. | Tut. | Total |
|           |                               | 4        | -        | -    | 4         | -      | -    | 4     |

|           |                        | Examination scheme |           |      |              |        |      |      |       |  |  |
|-----------|------------------------|--------------------|-----------|------|--------------|--------|------|------|-------|--|--|
| Sub Code  | Subject Name           | ,                  | Theory (  | .00) | Term         | Pract. |      |      |       |  |  |
| Sub Code  |                        | Intern             | al Assess | ment | End Sem      | work   | and  | Oral | Total |  |  |
|           |                        | Test1              | Test2     | Avg. | Exam         | WUIK   | Oral |      |       |  |  |
| ISDLO8042 | <b>Optimal Control</b> | 20                 | 20        | 20   | 80           |        |      |      | 100   |  |  |
| ISDL00042 | System                 | 20                 | 20        | 20   | 80           | -      |      |      | 100   |  |  |
|           |                        |                    |           |      | $\mathbf{O}$ |        |      |      |       |  |  |
|           |                        |                    |           |      |              |        |      |      |       |  |  |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                               | Credits                                        |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| ISDLO8042        | Optimal Control System                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                              |
| Course Objective | 1. To make students understand the optimal control problems their ty<br>to solve them by calculus of variation and dynamic programming a                                                                                                                                                                                                                                                                                                   |                                                |
|                  | <ol> <li>To make student to understand the linear regulator and track discrete time optimal control systems.</li> </ol>                                                                                                                                                                                                                                                                                                                    | 1 1                                            |
| Course Outcome   | <ol> <li>The students will be able to</li> <li>Identify various optimal control problems with performance r<br/>minimum time, minimum fuel, minimum energy, terminal cost<br/>problems.</li> <li>Describe the principle of calculus of variation, wherein to determi<br/>that minimizes a specified functional.</li> <li>Derive the necessary conditions for optimal control problem, and<br/>for the linear regulator problem.</li> </ol> | and general<br>ine a function<br>d optimal law |
|                  | <ol> <li>Apply variational calculus for solving discrete linear quadratic stracking problems.</li> <li>Explain the method of dynamic programming leading to a function that is amenable to solution by using simulation software.</li> <li>Solve optimal control problems.</li> </ol>                                                                                                                                                      | _                                              |

Details of Syllabus:

Prerequisite: Knowledge of Linear algebra, Fourier Series, and differential calculus.

| Module | Торіс                                                                         | Hrs | CO  |
|--------|-------------------------------------------------------------------------------|-----|-----|
| 1      | Introduction: Formulation of optimal control problem, Performance             | 04  | CO1 |
|        | measure, selecting a performance measure.                                     |     |     |
| 2      | Calculus of variation I                                                       | 10  | CO2 |
|        | Fundamental concepts: functional, Linearity of functional, closeness,         |     |     |
|        | increment, variation, maxima and minima of functional, fundamental theorem    |     |     |
| ×      | of calculus of variation.                                                     |     |     |
|        | Extremum of functional of single function: fixed and free end point problems, |     |     |
|        | Extremum of functional of several independent function: fixed and free end    |     |     |
|        | point problems.                                                               |     |     |
|        |                                                                               |     |     |
|        |                                                                               |     |     |

| 3 | Calculus of variation II                                                          | 10 | CO3 |
|---|-----------------------------------------------------------------------------------|----|-----|
|   | Constrained extremum of functions: elimination method, Lagrange multiplier        |    |     |
|   | method Constrained extremum of functionals: point constraint, differential        |    |     |
|   | equation constraints, isoperimetric constraints.                                  |    |     |
|   | The Variational approach to optimal control problems: necessary conditions        |    |     |
|   | for optimal control for different boundary conditions                             |    |     |
| 4 | Linear Regulator and Tacking Systems:                                             | 06 | CO4 |
|   | Linear Quadratic Regulator(LQR): Finite time LQR and infinite time LQR            |    |     |
|   | Linear Quadratic Tracking Systems: Finite and infinite time Cases                 |    |     |
| 5 | Discrete time Optimal control systems: variational calculus for discrete          | 06 | CO5 |
|   | time systems, Discrete time LQR and tracking systems                              |    |     |
| 6 | <b>Dynamic Programming</b> : Principle of optimality, application of principle of | 12 | CO6 |
|   | optimality to decision making, dynamic programming applied to routing             |    |     |
|   | problem, Hamilton-Jacobi-Bellman (HJB) equation, LQR system using HJB             |    |     |
|   | equation                                                                          |    |     |

#### Internal Assessment:

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **Theory Examination:**

- 1) Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2) Total 4 questions need to be solved.
- 3) Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4) Remaining questions will be mixed in nature.
- 5) In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

#### Text Books.

- 1. D. S. Naidu, Optimal Control System, CRC Press LLC 2003,
- 2. D. E. Kirk, Optimal Control Theory An Introduction, Dover Publication, New York 1998.

#### **Reference Books**

- 1. B.D.O. Anderson and J.B. Moore. Optimal Control, Linear Quadratic Methods. Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.
- 2. H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley-Interscience, New York, 1972.
- 3. A. Sage. Optimum systems control. Prentice Hall, 2nd edition, 1977
- 4. F. L. Lewis and V. L. Syrmos. Optimal Control theory. Wiley Interscience, 2nd edition, 1995.
- 5. R. D. Robinett, D. G. Wilson, G. R. Eisler, and J. E. Hurtado. Applied dynamic programming for optimization of dynamical systems. Advances in Design and Control. SIAM, Philadelphia, 2005.
- 6. K. Ogata, Discrete Time Control System, Second Edition, PHI, Inc. 1995.

| Course<br>Code | Course<br>Name  | -      | g Scheme<br>HOURS) | (Contact | Credit Assigned |           |     |       |  |  |  |
|----------------|-----------------|--------|--------------------|----------|-----------------|-----------|-----|-------|--|--|--|
|                | Internet of     | Theory | Pract.             | Tut.     | Theory          | TW/Pract. | Tut | Total |  |  |  |
| ISDLO8043      | Things<br>(IOT) | 4      | -                  | -        | 4               | -         | -   | 4     |  |  |  |
|                |                 |        |                    |          |                 |           |     |       |  |  |  |
|                |                 |        |                    | T        |                 |           |     |       |  |  |  |

|           |                             |        |           | ]        | Examina     | tion sch | eme    |      |       |
|-----------|-----------------------------|--------|-----------|----------|-------------|----------|--------|------|-------|
|           |                             | T      | heory (ou | ut of 10 | 0)          |          | Pract. |      |       |
| Sub Code  | Subject Name                | Intern | al Assess | ment     | End         | Term     | and    | Oral | Total |
|           |                             | Test1  | Test2     | Avg.     | sem<br>Exam | work     | Oral   |      | Totai |
| ISDLO8043 | Internet of<br>Things (IOT) | 20     | 20        | 20       | 80          | -        |        | _    | 100   |
|           |                             |        |           |          |             |          | 5      |      |       |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | credits      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ISDLO8043        | Internet of Things (IOT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4            |
| Course objective | <ol> <li>To teach fundamentals of IoT</li> <li>To study data and knowledge management and use of de technology.</li> <li>To understand IoT architecture and Integration of embe with IoT</li> <li>To understand concept of IoT.</li> <li>To learn designing of industrial internet systems.</li> <li>To study overview of Android/ IOS app development Internet of Everything</li> </ol>                                                                                                          | dded devices |
| Course Outcome   | <ul> <li>Students will be able to-</li> <li>1. Demonstrate the knowledge of operation of IoT architecture</li> <li>2. Identify the various technologies for implementing IoT</li> <li>3. Discuss various communication Technologies used in IoT</li> <li>4. Discuss various communication models and protocols used</li> <li>5. Discuss about the role of cloud computing in IoT</li> <li>6. Illustrate the application of IoT in Industrial Automation Real World Design Constraints.</li> </ul> | d in IoT     |

## Details of Syllabus:

| Module | Content                                                        | Hrs | СО      |
|--------|----------------------------------------------------------------|-----|---------|
|        |                                                                |     | Mapping |
| 1      | Introduction to Internet of Things: An Overview                | 06  | CO1     |
|        | Introduction – Definition and characteristics of IoT, Physical |     |         |
|        | design of IoT- Things in IoT, IoT protocol, Logical design of  |     |         |
|        | IoT – IoT functional blocks, IoT Communication Models,         |     |         |
|        | IoT communication APIs.                                        |     |         |
| 2      | IoT Enabling Technology                                        | 06  | CO2     |
|        | Wireless Sensor Networks, Cloud Computing, Big Data            |     |         |
|        | Analytics, Communication Protocols, Embedded Systems.          |     |         |
|        | IOT Levels and Deployment Templates.                           |     |         |

| 3 | Introduction to Communication Technologies                     | 12 | CO3 |  |
|---|----------------------------------------------------------------|----|-----|--|
|   | 802.15.4,ZigBee, BLE, WiFi, LORA,GSM                           |    |     |  |
|   | basic protocol ,topologies, data rate, range, power,           |    |     |  |
|   | computations/bandwidth, QoS                                    |    | · · |  |
| 4 | Communication Model and Protocols                              | 12 | CO4 |  |
|   | M2M vs IOT ,Resource Management, Registration, Discovery       |    |     |  |
|   | Data Exchange Formats - XML & JSON, MQTT Protocol              |    |     |  |
|   | RESTFul Architecture, HTTP REST Model, CoAP Protocol           |    |     |  |
| 5 | Basics of Cloud Computing                                      | 06 | CO5 |  |
|   | Cloud Based Architecture, Basics of Virtualization ° Specific  |    |     |  |
|   | Characteristics that Define a Cloud, Software as a Service     |    |     |  |
|   | (SaaS), Platform as a Service (PaaS) and Infrastructure as a   |    |     |  |
|   | Service (IaaS) Cloud Delivery Models, Public Cloud, Private    |    |     |  |
|   | Cloud, Hybrid Cloud and Community Cloud Deployment             |    |     |  |
|   | Models ,Benefits, Challenges and Risks of Cloud Computing      |    | P   |  |
|   | Platforms and Cloud Services                                   |    |     |  |
| 6 | Case Studies of IOT                                            | 06 | CO6 |  |
|   | Home (Smart Lighting and Intrusion detection), Cities(Smart    |    |     |  |
|   | Parking, Garbage collection), Environment(Pollution detection, |    |     |  |
|   | Forest Fire Detection), Power (Smart Grid), Retail(Inventory   |    |     |  |
|   | Management), Logistics(Fleet Tracking)                         |    |     |  |
|   | Industry(Machine Diagnosis & Prognosis), Heath(Monitoring      |    |     |  |
|   | and Detection), Agriculture(Green House Monitoring, Animal     |    |     |  |
|   | Husbandry.                                                     |    |     |  |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

#### **Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

#### **Text Books:**

1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1<sup>st</sup>Edition, VPT, 2014.

2. Cloud Computing Black Book Edition-2014 by Jagannath Kallakurchi Wiley India

#### **Reference Books:**

- 1. Francis DaCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1<sup>st</sup> Edition, Apress Publications, 2013
- 2. Wimer Hazenberg, Menno Huisman and Sara Cordoba Rubino, "Meta Products: Building the Internet of Things", BIS publishers.

| Subject   | Subject Name                   | Teaching Scheme |        |      | Credits Assigned |        |      |       |   |  |
|-----------|--------------------------------|-----------------|--------|------|------------------|--------|------|-------|---|--|
| Code      |                                |                 |        |      |                  |        |      |       |   |  |
| ISDLO8044 | Power Plant<br>Instrumentation | Theory          | Pract. | Tut. | Theory           | Pract. | Tut. | Total |   |  |
|           | Instrumentation                | 4               |        | -    | -                | 4      |      | -     | 4 |  |
|           |                                |                 | I      |      |                  | ~      |      | -0    |   |  |
|           |                                |                 |        | Exa  | mination so      | heme   |      |       |   |  |

| Test1     Test2     Avg.     Sem Exam     Work     Oral       Power Plant     Image: Sem Exam                                                                          |           |              |       |        | E          | cxamination | n scheme |          |      | )     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-------|--------|------------|-------------|----------|----------|------|-------|
| Code     Internal Assessment(20)     End<br>Sem     Ternin<br>work     and<br>Oral     Oral     Tota       Test1     Test2     Avg.     Exam     Oral     Oral     Tota       ISDL08044     Power Plant     20     20     80     -     -     -     100 | -         | Subject Name |       | Theory | Marks(100) |             | Pract.   | •        |      |       |
| Test1Test2Avg.ExamISDL08044Power Plant202080100                                                                                                                                                                                                        | Code      |              |       |        |            |             |          | work and | Oral | Total |
|                                                                                                                                                                                                                                                        |           |              | Test1 | Test2  | Avg.       | Exam        | 0        |          |      |       |
|                                                                                                                                                                                                                                                        | ISDL08044 |              | 20    | 20     | 20         | 80          | 9        | -        | -    | 100   |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                           | credits |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ISDLO8044         | Power Plant Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4       |
| Course objectives | <ol> <li>To create awareness of energy resources and its scenario in worldwide.</li> <li>To study the concept of power generation using various resources.</li> <li>To study the role of Instrumentation in various power plants.</li> <li>To study and compare various power plants for optimal performance.</li> <li>To acquire students the knowledge about hazards and safety power plants.</li> </ol>                                                             | e.      |
| Course Outcomes   | <ul> <li>The students will be able to:</li> <li>1. Identify the energy sources and explain power generation.</li> <li>2. Describe operation and control of various equipment in the plant.</li> <li>3. Select the sites for hydroelectric power plants and explain its 4. Explain the power generation and control of Nuclear power plant.</li> <li>5. Describe the non-conventional energy resources.</li> <li>6. Compare different types of power plants.</li> </ul> | 1       |

#### **Details of Syllabus:**

Prerequisite: Knowledge of energy resources, types of power plants and power generation.

| Module | Content                                                                                                                                       | Hrs | CO Mapping |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| 1      |                                                                                                                                               |     |            |
| 1      | Introduction: Energy sources, their availability, worldwide energy                                                                            |     |            |
|        | production, energy scenario of India. Introduction to Power generation,                                                                       | 0.4 | 601        |
|        | load curve, load factor. Classification of energy generation resources.                                                                       | 04  | CO1        |
| 2      | <b>Thermal Power Plant</b> - Method of power generation, layout and energy                                                                    |     |            |
|        | conversion process. Types of Turbines & their control. Types of Boilers and their control. Types of Generators and their control, Condensers. |     |            |
|        | Types of Pumps and Fans, variable speed pumps and Fans, Material                                                                              | 14  | CO2        |
|        | handling system, study of all loops-water, steam, fuel etc. Schematics of                                                                     |     |            |
|        | Gas turbine and Diesel power plant. Application of DCS in power                                                                               |     |            |
|        | plants.                                                                                                                                       |     |            |
| 3      | Hydroelectric Power Plant- Site selection, Hydrology, Estimation                                                                              |     |            |
|        | electric power to be developed, classification of Hydropower plants.                                                                          | 06  | CO3        |
|        | Types of Turbines for hydroelectric power plant, pumped storage plants,                                                                       |     |            |
| 4      | storage reservoir plants.                                                                                                                     |     |            |
| 4      | Nuclear Power Plant – Concept of energy generation from nuclear                                                                               |     | CO4        |
|        | fission, control of chain reaction.                                                                                                           | 08  | CO4        |
|        | Schematics of Nuclear power plant, types of reactors, reactor                                                                                 |     |            |
|        | control, safety measures.                                                                                                                     |     |            |
| 5      | Non-conventional Energy Resources –                                                                                                           |     |            |
|        | Wind Energy: Power in wind, Conversion of wind power,                                                                                         |     |            |
|        | Aerodynamics of wind turbine, types of wind turbine and their                                                                                 |     |            |
|        | modes of operation, power control of wind turbines, Betz limit, Pitch                                                                         |     |            |
|        | & Yaw control, wind mill, wind pumps, wind farms, different generator                                                                         |     |            |
|        | protections, safety.                                                                                                                          |     |            |
|        | Solar Energy: Solar resource, solar energy conversion systems. Solar                                                                          | 12  | CO5        |
|        | PV technology: Block diagram of PV system, advantages and                                                                                     |     |            |
|        | limitations.                                                                                                                                  |     |            |
|        | Solar thermal energy system: Principle, solar collector and its types,                                                                        |     |            |
|        | solar concentrator and its types, safety.                                                                                                     |     |            |
|        | Introduction to Modern Biomass, Bio-fuels, Geothermal energy,                                                                                 |     |            |
|        | Tidal energy and Ocean thermal energy.                                                                                                        |     |            |
| 6      | Comparison of different types of power plant: thermal power plant,                                                                            |     |            |
|        | hydro electric power plant, wind, solar, nuclear power plant on the basis                                                                     | 0.4 |            |
|        | of: Performance, efficiency, site selection, Economics-capital and                                                                            | 04  | CO6        |
|        | running, safety.<br>Introduction to Hybrid Power Generation concept                                                                           |     |            |
|        | Introduction to Hybrid Power Generation concept.                                                                                              |     |            |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of
  - 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective

Lecture hours as mentioned in the syllabus.

#### **Text Books:**

- 1. P. K. Nag, Power plant engineering, 3<sup>rd</sup> edition, 2010. McGraw Hill.
- 2. K. Krishnaswamy, M. Ponni Bala, ,Power Plant Instrumentation, 2011, Prentice Hall India.
- 3. R. K. Rajput, A Textbook of Power Plant Engineering, 2010, Laxmi Publications.

#### **Reference Books:**

- 1. Domkundwar, Power Plant Engg.
- 2. B. H. Khan, Non-conventional energy resources, McGraw Hill, New Delhi.
- 3. Chetan Singh Solanki, Renewable energy Technology, Prentice Hall Publication.
- 4. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, New Delhi.
- 5. G. D. Rai, Nonconventional energy sources, Khanna Publication.
- 6. Dickinson & Cheremision off, Solar Energy Technology vol I & II.
- Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi ,Wind Energy Handbook (2001), John Wiley & Sons, ISBN: 0471489972.
- 8. James Manwell, J. F. Manwell, J. G. McGowan, Wind Energy Explained: Theory, Design and Application (2002), John Wiley and Sons Ltd, ISBN: 0471499722
- 9. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 10. Z. Lubosny, Wind Turbine Operation in Electric Power Systems (2003), Springer-Verlag New York, Inc ; ISBN: 354040340X.
- 11. G.F. Gilman, Boiler Control Systems Engineering, 2005, ISA Publication.

| Sub code  | Subject              | Teachi | ng Scheme | e (Hrs) | Credits Assigned |       |      |       |  |
|-----------|----------------------|--------|-----------|---------|------------------|-------|------|-------|--|
|           | Name                 | Theory | Pract.    | Tut.    | Theory           | Pract | Tut. | Total |  |
| ISDLO8045 | Functional<br>Safety | 4      | -         | -       | 4                | 5     | (    | 4     |  |
|           |                      |        |           |         | .6               |       |      |       |  |

|           |                   |        |                       | E                         | xaminati   | on Schem     | ie            |      |       |
|-----------|-------------------|--------|-----------------------|---------------------------|------------|--------------|---------------|------|-------|
|           |                   | J      | [heory(               | out of 1 <mark>0</mark> 0 | 0)         |              |               |      |       |
| Sub code  | Subject Name      |        | al Asses<br>out of 2( |                           | End<br>sem | Term<br>Work | Pract.<br>and | Oral | Total |
|           |                   | Test 1 | Test<br>2             | Avg.                      | Exam       | WORK         | oral          |      |       |
| ISDLO8045 | Functional safety | 20     | 20                    | 20                        | 80         |              | -             |      | 100   |
|           |                   | •      |                       |                           | 0          |              |               |      |       |

| Subject Code             | Subject Name                                                               | Credits      |
|--------------------------|----------------------------------------------------------------------------|--------------|
| ISDLO8045                | Functional Safety                                                          | 4            |
| <b>Course Objectives</b> | To make the students aware of basic concepts of safety instrumented system | n, standards |
|                          | and risk analysis techniques.                                              |              |
| Course Outcomes          | The students will be able to                                               |              |
|                          | 1. Define the role of Safety instrumented system in the industry.          |              |
|                          | 2. Describe steps involved in Safety life cycle                            |              |
|                          | 3. Explain process and safety control with SIS technologies.               |              |
|                          | 4. Learn types of events and combined probability calculations.            |              |
|                          | 5. Identify and analyse the hazards                                        |              |
|                          | 6. Determine the Safety integrity level.                                   |              |

#### Details of Syllabus:

Prerequisite: Digital Electronics, transducers and Process Control.

| Module | Contents                                                                       | Hrs. | СО      |
|--------|--------------------------------------------------------------------------------|------|---------|
|        |                                                                                |      | Mapping |
| 1      | Introduction :                                                                 | 06   | CO1     |
|        | Safety Instrumented System (SIS) - need, features, components, difference      |      |         |
|        | between basic process control system and SIS, Risk: how to measure risk, risk  |      |         |
|        | tolerance, Safety integrity level, safety instrumented functions.              |      |         |
|        | Standards and Regulation – HSE-PES, AIChE-CCPS, IEC-61508, IEC 61511           |      |         |
|        | (2-16), ANSI/ISA-84.00.01-2004 (IEC 61511 Mod ) & ANSI/ISA - 84.01-            |      |         |
|        | 1996.9, NFPA 85.10, API RP 556,11, API RP 14C,11, OSHA (29 CFR                 |      |         |
|        | 1910.119 – Process Saftey Management of Highly Hazardous Chemicals)            |      |         |
| 2      | Safety life cycle:                                                             | 06   | CO2     |
|        | Standards and safety life cycle, analysis phase, realisation phase, operations |      |         |
|        | phase Allocation of Safety Functions to Protection Layers, Develop Safety      |      |         |
|        | Requirements Specifications, SIS Design and Engineering, Installation,         |      |         |

|   | Commissioning and Validation, Operations and Maintenance, Modification,            |    |     |
|---|------------------------------------------------------------------------------------|----|-----|
|   | De-commissioning.                                                                  |    |     |
| 3 | Process Control                                                                    | 08 | CO3 |
|   | Active / Dynamic , Safety Control – Passive / Dormant, Demand                      |    |     |
|   | Mode vs. Continuous Mode, Separation of Control and Safety                         |    |     |
|   | Systems - HSE-PES, AIChE-CCPS, IEC-61508, Common Cause and                         |    |     |
|   | Systematic or Functional Failures,                                                 |    |     |
|   | Protection Layers:                                                                 |    |     |
|   | Prevention and mitigation layers, SIS Technologies: Pneumatic Systems, Relay       |    |     |
|   | Systems, Solid State Systems, Microprocessors / PLC (Software based)               |    |     |
|   | Systems                                                                            |    | •   |
| 4 | Rules of Probability:                                                              | 08 | CO4 |
|   | Assigning probability to an event, types of events and event combination,          |    |     |
|   | combining event probabilities, fault tree analysis, failure rate and probability,  |    |     |
|   | simplifications and approximations.                                                |    |     |
| 5 | Process Hazard Analysis:                                                           | 12 | CO5 |
|   | Consequence analysis: Characterisation of potential events, dispersion, impacts,   |    |     |
|   | occupancy considerations, consequence analysis tools.                              |    |     |
|   | Likelihood analysis: estimation and statistical analysis, fault propagation, event |    |     |
|   | tree analysis and fault tree analysis, Quantitative layer of protection analysis:  |    |     |
|   | multiple initiating events, estimating initiating event frequencies and IPL        |    |     |
|   | failure probabilities                                                              |    |     |
|   | HAZOP and SIL calculation and verification.                                        |    |     |
| 6 | Determining the Safety Integrity Level (SIL):                                      | 08 | CO6 |
|   | Evaluating Risk, Safety Integrity Levels, SIL Determination Method : As Low        |    |     |
|   | As Reasonably Practical (ALARP), Risk matrix, Risk Graph, Layers of                |    |     |
|   | Protection Analysis (LOPA).                                                        |    |     |
|   |                                                                                    |    |     |

#### **Internal Assessment:**

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

#### **End Semester Theory Examination:**

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

#### **Reference Books:**

- Paul Gruhn and H Jarry L. Cheddie," Safety Instrumented systems: Design, Analysis and Justification", ISA, 2<sup>nd</sup> edition, 2006
- 2. Dr. Eric W Scharpf, Heidi J Hartmann, Harlod W Thomas, "Practical SIL target selection : Risk analysis per the IEC 61511 safety Lifecycle", exida,2012.
- 3. Ed Marszal, Eric W Scharpf, "Safety Integrity Level Selection", ISA.

| University of Mumbai |                                           |        |                      |                  |                 |       |  |  |  |
|----------------------|-------------------------------------------|--------|----------------------|------------------|-----------------|-------|--|--|--|
| Course               | <b>Course Name</b>                        |        | g Scheme<br>t Hours) | Credits Assigned |                 |       |  |  |  |
| Code                 |                                           | Theory | Tutorial             | Theory           | <b>Tutorial</b> | Total |  |  |  |
| ILO8021              | Project Management<br>(abbreviated as PM) | 3      | -                    | 3                |                 | 3     |  |  |  |
|                      |                                           |        |                      |                  |                 |       |  |  |  |

| ILO8021  | Project Manag<br>(abbreviated as |                     | 3      |      | -        | 3        | -     | 3   |
|----------|----------------------------------|---------------------|--------|------|----------|----------|-------|-----|
|          |                                  |                     |        |      |          |          |       |     |
|          |                                  |                     |        | Exa  | mination | Scheme   |       |     |
| Course   | Course Name                      |                     | Theory |      |          |          |       |     |
| code     |                                  | Internal Assessment |        | End  | Exam     | Term     | Total |     |
| coue     |                                  | Test 1              | Test 2 | A    | Sem.     | Duration | Work  |     |
|          |                                  | Test 1              | Test 2 | Avg. | Exam     | (Hrs.)   |       | ·   |
| LO8021   | Project                          | 20                  | 20     | 20   | 80       | 03       |       | 100 |
| ILU8021  | Management                       | 20 20 20            |        | 80   | 03       | -        | 100   |     |
| <u> </u> |                                  |                     |        |      |          |          |       |     |

| Course<br>Objectives | <ul> <li>To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.</li> <li>To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.</li> </ul>                                                                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Outcomes   | <ul> <li>Student will be able to</li> <li>Apply selection criteria and select an appropriate project from different options.</li> <li>Write work break down structure for a project and develop a schedule based on it.</li> <li>Identify opportunities and threats to the project and decide an approach to deal with them strategically.</li> <li>Use Earned value technique and determine &amp; predict status of the project.</li> <li>Capture lessons learned during project phases and document them for future reference</li> </ul> |

| Module | Contents                                                                 | Hours |
|--------|--------------------------------------------------------------------------|-------|
| 1      | Project Management Foundation: Definition of a project, Project Vs       | 5     |
|        | Operations, Necessity of project management, Triple constraints, Project |       |
|        | life cycles (typical & atypical) Project phases and stage gate process.  |       |
|        | Role of project manager. Negotiations and resolving conflicts. Project   |       |
|        | management in various organization structures. PM knowledge areas as     |       |
|        | per Project Management Institute (PMI).                                  |       |
| 2      | Initiating Projects: How to get a project started, Selecting project     | 6     |
|        | strategically, Project selection models (Numeric /Scoring Models and     |       |
|        | Non-numeric models), Project portfolio process, Project sponsor and      |       |
|        | creating charter; Project proposal. Effective project team, Stages of    |       |
|        | team development & growth (forming, storming, norming &                  |       |
|        | performing), team dynamics.                                              |       |
| 3      | Project Planning and Scheduling: Work Breakdown structure (WBS)          | 8     |
|        | and linear responsibility chart, Interface Co-ordination and concurrent  |       |
|        | engineering, Project cost estimation and budgeting, Top down and         |       |

|   | bottoms up budgeting, Networking and Scheduling techniques. PERT,<br>CPM, GANTT chart. Introduction to Project Management Information<br>System (PMIS).                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 4 | <b>Planning Projects:</b> Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks                                                                                                                                                                       | 6 | 5 |
| 5 | <ul> <li>Executing Projects: Planning monitoring and controlling cycle.<br/>Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings.</li> <li>Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit.</li> <li>Project Contracting Project procurement management, contracting and outsourcing,</li> </ul>                                  | 8 |   |
| 6 | <ul> <li>Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects.</li> <li>Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study.</li> </ul> | 6 |   |

#### **Books Recommended:**

#### **Reference Books:**

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7<sup>th</sup>Ed.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK<sup>®</sup> Guide), 5<sup>th</sup> Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

#### **Theory Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                           |        |                      |                  |                  |       |  |  |  |
|----------------------|-------------------------------------------|--------|----------------------|------------------|------------------|-------|--|--|--|
| Course<br>Code       | Course Name                               |        | g Scheme<br>t Hours) | Credits Assigned |                  |       |  |  |  |
|                      |                                           | Theory | Tutorial             | Theory           | <b>Tutoria</b> l | Total |  |  |  |
| ILO8022              | Finance Management<br>(abbreviated as FM) | 3      | -                    | 3                |                  | 3     |  |  |  |

| ILO8022            | Finance Manag<br>(abbreviated as |                     | 3      |      | -            | 3                  |       | 3   | $\boldsymbol{\cdot}$ |
|--------------------|----------------------------------|---------------------|--------|------|--------------|--------------------|-------|-----|----------------------|
| Examination Scheme |                                  |                     |        |      |              |                    |       |     |                      |
| Course             | Course Name                      |                     | Theory |      |              |                    |       |     |                      |
| Course<br>code     |                                  | Internal Assessment |        | End  | Exam         | Term               | Total |     |                      |
|                    |                                  | Test 1              | Test 2 | Avg. | Sem.<br>Exam | Duration<br>(Hrs.) | Work  |     |                      |
| ILO8022            | Finance<br>Management            | 20                  | 20     | 20   | 80           | 03                 | -     | 100 |                      |
|                    | 1                                |                     |        |      |              |                    | -     |     |                      |

|                    | • Overview of Indian financial system, instruments and market              |
|--------------------|----------------------------------------------------------------------------|
| Course             | • Basic concepts of value of money, returns and risks, corporate finance,  |
| Objectives         | working capital and its management                                         |
|                    | • Knowledge about sources of finance, capital structure, dividend policy   |
| Course             | Student will be able to                                                    |
| Course<br>Outcomes | <ul> <li>Understand Indian finance system and corporate finance</li> </ul> |
| Outcomes           | • Take investment, finance as well as dividend decisions                   |
|                    |                                                                            |

| Module | Contents                                                                | Hours |
|--------|-------------------------------------------------------------------------|-------|
| 1      | Overview of Indian Financial System: Characteristics, Components        | 6     |
|        | and Functions of Financial System. Financial Instruments: Meaning,      |       |
|        | Characteristics and Classification of Basic Financial Instruments -     |       |
|        | Equity Shares, Preference Shares, Bonds-Debentures, Certificates of     |       |
|        | Deposit, and Treasury Bills. Financial Markets: Meaning,                |       |
|        | Characteristics and Classification of Financial Markets — Capital       |       |
|        | Market, Money Market and Foreign Currency Market. Financial             |       |
|        | Institutions: Meaning, Characteristics and Classification of Financial  |       |
| ( C    | Institutions - Commercial Banks, Investment-Merchant Banks and          |       |
|        | Stock Exchanges                                                         |       |
| 2      | Concepts of Returns and Risks: Measurement of Historical Returns        | 6     |
|        | and Expected Returns of a Single Security and a Two-security Portfolio; |       |
|        | Measurement of Historical Risk and Expected Risk of a Single Security   |       |
|        | and a Two-security Portfolio.                                           |       |
|        | Time Value of Money: Future Value of a Lump Sum, Ordinary               |       |
|        | Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary         |       |
|        | Annuity, and Annuity Due; Continuous Compounding and Continuous         |       |
| •      | Discounting.                                                            |       |
| 3      | Overview of Corporate Finance: Objectives of Corporate Finance;         | 9     |
|        | Functions of Corporate Finance-Investment Decision, Financing           |       |
|        | Decision, and Dividend Decision.                                        |       |
|        | Financial Ratio Analysis: Overview of Financial Statements-Balance      |       |
|        | Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of     |       |
|        | Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity      |       |
|        | Ratios; Profitability Ratios; Capital Structure Ratios; Stock Market    |       |

S

|   | Ratios; Limitations of Ratio Analysis.                                |    |
|---|-----------------------------------------------------------------------|----|
| 4 | Capital Budgeting: Meaning and Importance of Capital Budgeting;       | 10 |
|   | Inputs for Capital Budgeting Decisions; Investment Appraisal          |    |
|   | Criterion—Accounting Rate of Return, Payback Period, Discounted       | •  |
|   | Payback Period, Net Present Value(NPV), Profitability Index, Internal |    |
|   | Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)     |    |
|   | Working Capital Management: Concepts of Meaning Working               |    |
|   | Capital; Importance of Working Capital Management; Factors Affecting  |    |
|   | an Entity's Working Capital Needs; Estimation of Working Capital      |    |
|   | Requirements; Management of Inventories; Management of                |    |
|   | Receivables; and Management of Cash and Marketable Securities.        |    |

#### **Books Recommended:**

#### **Reference Books:**

- 1. Fundamentals of Financial Management, 13<sup>th</sup> Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10<sup>th</sup> Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9<sup>th</sup> Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11<sup>th</sup> Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

#### **Theory Examination**:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|         | Univ                                                                      | ersity of M | umbai                 |                  |                 |       |
|---------|---------------------------------------------------------------------------|-------------|-----------------------|------------------|-----------------|-------|
| Course  | Course Name                                                               |             | g Scheme<br>ct Hours) | Credits Assigned |                 |       |
| Code    |                                                                           | Theory      | Tutorial              | Theory           | <b>Tutorial</b> | Total |
| ILO8023 | Entrepreneurship<br>Development and<br>Management<br>(abbreviated as EDM) | 3           | -                     | 3                |                 | 3     |

|                |                  | Examination Scheme  |        |      |      |          |      |       |
|----------------|------------------|---------------------|--------|------|------|----------|------|-------|
| Course<br>code |                  |                     |        |      |      |          |      |       |
|                | Course Name      | Internal Assessment |        |      | End  | Exam     | Term | Total |
| couc           |                  | Test 1              | Test 2 | Avg. | Sem. | Duration | Work | Total |
|                |                  | 1050 1              | 1050 2 | Avg. | Exam | (Hrs.)   |      |       |
|                | Entrepreneurship |                     |        |      |      |          | •    |       |
| ILO8023        | Development and  | 20                  | 20     | 20   | 80   | 03       | -    | 100   |
|                | Management       |                     |        |      |      |          |      |       |
|                |                  |                     |        |      |      |          |      |       |

| Course<br>Objectives | • To acquaint with entrepreneurship and management of business             |
|----------------------|----------------------------------------------------------------------------|
|                      | <ul> <li>Understand Indian environment for entrepreneurship</li> </ul>     |
|                      | • Idea of EDP, MSME                                                        |
|                      | Student will be able to                                                    |
| Course               | <ul> <li>Understand the concept of business plan and ownerships</li> </ul> |
| Outcomes             | • Interpret key regulations and legal aspects of entrepreneurship in India |
|                      | <ul> <li>Understand government policies for entrepreneurs</li> </ul>       |
|                      |                                                                            |

| Module | Contents                                                                  | Hours |
|--------|---------------------------------------------------------------------------|-------|
| 1      | <b>Overview Of Entrepreneurship:</b> Definitions, Roles and               | 4     |
|        | Functions/Values of Entrepreneurship, History of Entrepreneurship         |       |
|        | Development, Role of Entrepreneurship in the National Economy,            |       |
|        | Functions of an Entrepreneur, Entrepreneurship and Forms of Business      |       |
|        | Ownership                                                                 |       |
|        | Role of Money and Capital Markets in Entrepreneurial Development:         |       |
|        | Contribution of Government Agencies in Sourcing information for           |       |
|        | Entrepreneurship                                                          |       |
| 2      | <b>Business Plans And Importance Of Capital To Entrepreneurship:</b>      | 9     |
|        | Preliminary and Marketing Plans, Management and Personnel, Start-up       |       |
|        | Costs and Financing as well as Projected Financial Statements, Legal      |       |
|        | Section, Insurance, Suppliers and Risks, Assumptions and Conclusion,      |       |
|        | Capital and its Importance to the Entrepreneur                            |       |
|        | <b>Entrepreneurship And Business Development:</b> Starting a New          |       |
| *      | Business, Buying an Existing Business, New Product Development,           |       |
|        | Business Growth and the Entrepreneur Law and its Relevance to             |       |
|        | Business Operations                                                       |       |
| 3      | Women's Entrepreneurship Development, Social entrepreneurship-role        | 5     |
|        | and need, EDP cell, role of sustainability and sustainable development    |       |
|        | for SMEs, case studies, exercises                                         |       |
| 4      | <b>Indian Environment for Entrepreneurship:</b> key regulations and legal | 8     |
|        | aspects, MSMED Act 2006 and its implications, schemes and policies        |       |

|   | of the Ministry of MSME, role and responsibilities of various<br>government organisations, departments, banks etc., Role of State<br>governments in terms of infrastructure developments and support etc.,<br>Public private partnerships, National Skill development Mission, Credit<br>Guarantee Fund, PMEGP, discussions, group exercises etc |                | 2 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|
| 5 | <b>Effective Management of Business:</b> Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing                                                  | 8              | 5 |
| 6 | Achieving Success In The Small Business: Stages of the small<br>business life cycle, four types of firm-level growth strategies, Options –<br>harvesting or closing small business Critical Success factors of small<br>business                                                                                                                 | • <sup>5</sup> |   |

#### **Reference Books:**

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

## Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |             |                        |                  |  |  |
|----------------------|-------------|------------------------|------------------|--|--|
| Course               | Course Name | <b>Teaching Scheme</b> | Credits Assigned |  |  |

| Code    |                                             |         | (Contac     | t Hours)   |          |          |       |   |
|---------|---------------------------------------------|---------|-------------|------------|----------|----------|-------|---|
|         |                                             |         | Theory      | Tutorial   | Theory   | Tutorial | Total |   |
| ILO8024 | Human Resou<br>Managemen<br>(abbreviated as | nt      | 3           | -          | 3        | -        | 3     | 5 |
|         |                                             |         |             |            |          |          |       |   |
|         |                                             |         |             | Examinatio | n Scheme |          |       |   |
| Course  |                                             |         | Т           | heory      |          |          |       |   |
| code    | Course Name                                 | Interna | al Assessme | nt End     | Exam     | Term     | Total |   |

|                |                | Examination Scheme |           |      |      |          |      |       |
|----------------|----------------|--------------------|-----------|------|------|----------|------|-------|
| Course         |                |                    |           |      |      |          |      |       |
| Course<br>code | Course Name    | Interna            | al Assess | ment | End  | Exam     | Term | Total |
| couc           |                | Test 1             | Test 2    | Aug  | Sem. | Duration | Work | Total |
|                |                | Test I             | Test Z    | Avg. | Exam | (Hrs.)   |      | •     |
| ILO8024        | Human Resource | 20                 | 20        | 20   | 80   | 03       |      | 100   |
| IL08024        | Management     | 20                 | 20        | 20   | 00   | 03       |      | 100   |

|            | • To introduce the students with basic concepts, techniques and practices of    |
|------------|---------------------------------------------------------------------------------|
|            | the human resource management.                                                  |
|            | • To provide opportunity of learning Human resource Management (HRM)            |
|            | processes, related with the functions, and challenges in the emerging           |
|            | perspective.                                                                    |
| Course     | • To familiarize the students about the latest developments, trends & different |
| Objectives | aspects of HRM.                                                                 |
|            | • To acquaint the student with the importance of behavioral skills, Inter-      |
|            | personal, inter- group in an organizational setting.                            |
|            | • To prepare the students as future organizational change facilitators, stable  |
|            | leaders and managers, using the knowledge and techniques of human               |
|            | resource management.                                                            |
|            | Learner will be able to                                                         |
|            | • Gain knowledge and understand the concepts about the different aspects of     |
|            | the human resource management.                                                  |
|            | • Understand and tackle the changes and challenges in today's diverse,          |
| Course     | dynamic organizational setting and culture.                                     |
| Outcomes   | • Utilize the behavioral skill sets learnt, in working with different people,   |
|            | teams & groups within the national and global environment.                      |
|            | • Apply the acquired techniques, knowledge and integrate it within the          |
|            | engineering/ non engineering working environment emerging as future             |
|            | engineers and managers.                                                         |

| S      | <ul> <li>Apply the acquired techniques, knowledge and integrate it with<br/>engineering/ non engineering working environment emerging as<br/>engineers and managers.</li> </ul> |       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Module | Contents                                                                                                                                                                        | Hours |
| 1      | Introduction to HR: Human Resource Management- Concept, Scope                                                                                                                   | 05    |
|        | and Importance, Interdisciplinary Approach Relationship with other                                                                                                              |       |
|        | Sciences, Competencies of HR Manager, HRM functions. Human                                                                                                                      |       |
|        | resource development (HRD): changing role of HRM – Human resource                                                                                                               |       |
|        | Planning, Technological change, Restructuring and rightsizing,                                                                                                                  |       |
|        | Empowerment, TQM, Managing ethical issues.                                                                                                                                      |       |
| 2      | Organizational Behavior (OB) : Introduction to OB Origin, Nature and                                                                                                            | 07    |

|     |   | Scope of Organizational Behavior, Relevance to Organizational             |    |   |
|-----|---|---------------------------------------------------------------------------|----|---|
|     |   | Effectiveness and Contemporary issues, Personality: Meaning and           |    |   |
|     |   | Determinants of Personality, Personality development, Personality         |    |   |
|     |   | Types, Assessment of Personality Traits for Increasing Self Awareness,    |    |   |
|     |   | Perception: Attitude and Value, Effect of perception on Individual        |    |   |
|     |   | Decision-making, Attitude and Behavior. Motivation: Theories of           |    |   |
|     |   | Motivation and their Applications for Behavioral Change (Maslow,          |    |   |
|     |   | Herzberg, McGregor); Group Behavior and Group Dynamics: Work              |    |   |
|     |   | groups formal and informal groups and stages of group development.        |    |   |
|     |   | Team Effectiveness: High performing teams, Team Roles, cross              |    |   |
|     |   | functional and self-directed team. Case study                             |    |   |
| -   | 3 | Organizational Structure & Design: Structure, size, technology,           | 06 |   |
|     | 5 | Environment of organization; Organizational Roles & conflicts: Concept    | 00 |   |
|     |   | of roles; role dynamics; role conflicts and stress. Leadership: Concepts  |    |   |
|     |   | and skills of leadership, Leadership and managerial roles, Leadership     |    |   |
|     |   |                                                                           |    |   |
|     |   | styles and contemporary issues in leadership. Power and Politics:         |    |   |
| -   | 1 | Sources and uses of power; Politics at workplace, Tactics and strategies. | 05 |   |
|     | 4 | Human resource Planning: Recruitment and Selection process, Job-          | 03 |   |
|     |   | enrichment, Empowerment - Job-Satisfaction, employee morale.              |    |   |
|     |   | Performance Appraisal Systems: Traditional & modern methods,              |    |   |
|     |   | Performance Counseling, Career Planning. Training & Development:          |    |   |
| _   |   | Identification of Training Needs, Training Methods                        |    |   |
|     | 5 | Emerging Trends in HR : Organizational development; Business              | 06 |   |
|     |   | Process Re-engineering (BPR), BPR as a tool for organizational            |    |   |
|     |   | development, managing processes & transformation in HR.                   |    |   |
|     |   | Organizational Change, Culture, Environment, Cross Cultural               |    |   |
|     |   | Leadership and Decision Making: Cross Cultural Communication and          |    |   |
|     |   | diversity at work, Causes of diversity, managing diversity with special   |    |   |
|     |   | reference to handicapped, women and ageing people, intra company          |    |   |
|     |   | cultural difference in employee motivation.                               |    |   |
| L T | 6 | HR & MIS: Need, purpose, objective and role of information system in      | 10 |   |
|     |   | HR, Applications in HRD in various industries (e.g. manufacturing         |    |   |
|     |   | R&D, Public Transport, Hospitals, Hotels and service industries           |    |   |
|     |   | Strategic HRM                                                             |    |   |
|     |   | Role of Strategic HRM in the modern business world, Concept of            |    |   |
|     |   | Strategy, Strategic Management Process, Approaches to Strategic           |    |   |
|     |   | Decision Making; Strategic Intent – Corporate Mission, Vision,            |    |   |
|     |   | Objectives and Goals                                                      |    |   |
|     |   | Labor Laws & Industrial Relations                                         |    |   |
|     |   | Evolution of IR, IR issues in organizations, Overview of Labor Laws in    |    |   |
|     |   | India; Industrial Disputes Act, Trade Unions Act, Shops and               |    |   |
|     |   | Establishments Act                                                        |    |   |
| L   |   |                                                                           |    | l |

#### **Reference Books:**

- 1. Stephen Robbins, Organizational Behavior, 16<sup>th</sup> Ed, 2013
- 2. V S P Rao, Human Resource Management, 3<sup>rd</sup> Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6<sup>th</sup> edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15<sup>th</sup> Ed, 2015, Himalaya Publishing, 15<sup>th</sup>edition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5<sup>th</sup> Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                |                                                                                                        | Unive             | ersity of M                        | umbai        |                  |                  |       |   |
|----------------|--------------------------------------------------------------------------------------------------------|-------------------|------------------------------------|--------------|------------------|------------------|-------|---|
| Course<br>Code | Course Name<br>Professional Ethics and<br>Corporate Social<br>Responsibility<br>(abbreviated as PECSR) |                   | Teaching Scheme<br>(Contact Hours) |              | Credits Assign   |                  | ed    |   |
| Code           |                                                                                                        |                   | Theory                             | Tutorial     | Theory           | <b>Tutoria</b> l | Total |   |
| ILO8025        |                                                                                                        |                   | 3                                  | -            | 3                | <u> </u>         | 3     | 5 |
|                |                                                                                                        |                   |                                    |              |                  |                  |       |   |
|                |                                                                                                        |                   |                                    | Examinatio   | n Scheme         |                  |       |   |
| Course         |                                                                                                        | Theory            |                                    |              |                  |                  |       |   |
| code           | Course Name                                                                                            | Interna<br>Test 1 | l Assessme                         | ent End Sem. | Exam<br>Duration | Term<br>Work     | Total |   |

|                |                  | Examination Scheme |           |       |      |          |      |       |
|----------------|------------------|--------------------|-----------|-------|------|----------|------|-------|
| Course         |                  |                    |           | Theor | у    |          |      | •     |
| Course<br>code | Course Name      | Interna            | al Assess | ment  | End  | Exam     | Term | Total |
| couc           |                  | Test 1             | Test 2    | Aug   | Sem. | Duration | Work | Total |
|                |                  | Test I             | Test Z    | Avg.  | Exam | (Hrs.)   |      |       |
|                | Professional     |                    |           |       |      |          | •    |       |
| ILO8025        | Ethics and       | 20                 | 20        | 20    | 80   | 03       | _    | 100   |
| 11.00025       | Corporate Social | 20                 | 20        | 20    | 00   | 05       | -    | 100   |
|                | Responsibility   |                    |           |       |      |          |      |       |
|                |                  |                    |           |       |      |          |      |       |

| Course     | • To understand professional ethics in business                                 |
|------------|---------------------------------------------------------------------------------|
| Objectives | To recognized corporate social responsibility                                   |
|            | Student will be able to                                                         |
| Course     | • Understand rights and duties of business                                      |
| Outcomes   | • Distinguish different aspects of corporate social responsibility              |
| Outcomes   | Demonstrate professional ethics                                                 |
|            | <ul> <li>Understand legal aspects of corporate social responsibility</li> </ul> |
|            |                                                                                 |

| Module | Contents                                                              | Hours |
|--------|-----------------------------------------------------------------------|-------|
| 1      | Professional Ethics and Business: The Nature of Business Ethics;      | 04    |
|        | Ethical Issues in Business; Moral Responsibility and Blame;           |       |
|        | Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties |       |
|        | of Business                                                           |       |
| 2      | Professional Ethics in the Marketplace: Perfect Competition;          | 08    |
|        | Monopoly Competition; Oligopolistic Competition; Oligopolies and      |       |
|        | Public Policy                                                         |       |
|        | Professional Ethics and the Environment: Dimensions of Pollution      |       |
|        | and Resource Depletion; Ethics of Pollution Control; Ethics of        |       |
|        | Conserving Depletable Resources                                       |       |
| 3      | Professional Ethics of Consumer Protection: Markets and Consumer      | 06    |
|        | Protection; Contract View of Business Firm's Duties to Consumers; Due |       |
|        | Care Theory; Advertising Ethics; Consumer Privacy                     |       |
|        | Professional Ethics of Job Discrimination: Nature of Job              |       |
|        | Discrimination; Extent of Discrimination; Reservation of Jobs.        |       |
| 4      | Introduction to Corporate Social Responsibility: Potential Business   | 05    |
|        | Benefits—Triple bottom line, Human resources, Risk management,        |       |
|        | Supplier relations; Criticisms and concerns-Nature of business;       |       |

|   | Motives; Misdirection.                                                  |    |
|---|-------------------------------------------------------------------------|----|
|   | Trajectory of Corporate Social Responsibility in India                  |    |
| 5 | Corporate Social Responsibility: Articulation of Gandhian Trusteeship   | 08 |
|   | Corporate Social Responsibility and Small and Medium Enterprises        |    |
|   | (SMEs) in India, Corporate Social Responsibility and Public-Private     |    |
|   | Partnership (PPP) in India                                              |    |
| 6 | Corporate Social Responsibility in Globalizing India: Corporate         | 08 |
|   | Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry |    |
|   | of Corporate Affairs, Government of India, Legal Aspects of Corporate   |    |
|   | Social Responsibility—Companies Act, 2013.                              |    |

#### **Reference Books:**

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

## Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                | Unive                                       | ersity of M                        | umbai    |                  |                 |       |
|----------------|---------------------------------------------|------------------------------------|----------|------------------|-----------------|-------|
| Course<br>Code | Course Name                                 | Teaching Scheme<br>(Contact Hours) |          | Credits Assigned |                 | ed    |
| Code           |                                             | Theory                             | Tutorial | Theory           | <b>Tutorial</b> | Total |
| ILO8026        | Research Methodology<br>(abbreviated as RM) | 3                                  | -        | 3                |                 | 3     |
|                |                                             |                                    |          |                  |                 |       |

| ILO8026 | Research Metho<br>(abbreviated as |         | 3         |       | -        | 3        |      | 3     |   |
|---------|-----------------------------------|---------|-----------|-------|----------|----------|------|-------|---|
|         |                                   |         |           |       |          |          |      |       |   |
|         |                                   |         |           | Exa   | mination | Scheme   |      |       |   |
| Course  |                                   |         |           | Theor | y        |          |      |       |   |
| code    | Course Name                       | Interna | al Assess | ment  | End      | Exam     | Term | Total |   |
| coue    |                                   | Test 1  | Test 2    | A     | Sem.     | Duration | Work |       |   |
|         |                                   | Test 1  | Test 2    | Avg.  | Exam     | (Hrs.)   |      | · ·   |   |
| ILO8026 | Research<br>Methodology           | 20      | 20        | 20    | 80       | 03       | -    | 100   |   |
|         |                                   |         |           |       |          |          | •    |       | - |

| Course<br>Objectives | <ul> <li>To understand Research and Research Process</li> <li>To acquaint students with identifying problems for research and develop research strategies</li> <li>To familiarize students with the techniques of data collection, analysis of data and interpretation</li> </ul> |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Student will be able to                                                                                                                                                                                                                                                           |
|                      | • Prepare a preliminary research design for projects in their subject matter                                                                                                                                                                                                      |
| Course               | areas                                                                                                                                                                                                                                                                             |
| Outcomes             | <ul> <li>Accurately collect, analyze and report data</li> </ul>                                                                                                                                                                                                                   |
|                      | Present complex data or situations clearly                                                                                                                                                                                                                                        |
|                      | Review and analyze research findings                                                                                                                                                                                                                                              |
|                      |                                                                                                                                                                                                                                                                                   |

| Module | Contents                                                               | Hours |
|--------|------------------------------------------------------------------------|-------|
| 1      | Introduction and Basic Research Concepts: Research – Definition;       | 10    |
|        | Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, |       |
|        | Principle. Research methods vs Methodology, Need of Research in        |       |
| (      | Business and Social Sciences, Objectives of Research, Issues and       |       |
|        | Problems in Research, Characteristics of Research: Systematic, Valid,  |       |
|        | Verifiable, Empirical and Critical                                     |       |
| 2      | Types of Research: Basic Research, Applied Research, Descriptive       | 08    |
|        | Research, Analytical Research, Empirical Research, Qualitative and     |       |
|        | Quantitative Approaches                                                |       |
| 3      | Research Design and Sample Design : Research Design – Meaning,         | 08    |
|        | Types and Significance, Sample Design – Meaning and Significance       |       |
|        | Essentials of a good sampling Stages in Sample Design Sampling         |       |
|        | methods/techniques Sampling Errors                                     |       |
| 4      | Research Methodology : Meaning of Research Methodology, Stages in      | 08    |
|        | Scientific Research Process                                            |       |
|        | a. Identification and Selection of Research Problem                    |       |
|        | <b>b.</b> Formulation of Research Problem                              |       |
|        | <b>c.</b> Review of Literature                                         |       |
|        | <b>d.</b> Formulation of Hypothesis                                    |       |

Ň

|   | e. Formulation of research Design                                       |                     |   |
|---|-------------------------------------------------------------------------|---------------------|---|
|   | f. Sample Design                                                        |                     |   |
|   | g. Data Collection                                                      |                     |   |
|   | h. Data Analysis                                                        |                     |   |
|   | i. Hypothesis testing and Interpretation of Data                        |                     |   |
|   | j. Preparation of Research Report                                       |                     |   |
| 5 | Formulating Research Problem: Considerations: Relevance, Interest,      | 04                  |   |
|   | Data Availability, Choice of data, Analysis of data, Generalization and | <b>C</b> ?          |   |
|   | Interpretation of analysis                                              | $\mathbf{\bigcirc}$ |   |
| 6 | Outcome of Research: Preparation of the report on conclusion reached,   | 04                  | 1 |
|   | Validity Testing & Ethical Issues, Suggestions and Recommendation       | •                   |   |

## **Reference Books:**

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2<sup>nd</sup>ed), Singapore, Pearson Education

### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|         | Univ                                       | ersity of M                        | umbai    |        |                  |       |
|---------|--------------------------------------------|------------------------------------|----------|--------|------------------|-------|
| Course  | Course Name                                | Teaching Scheme<br>(Contact Hours) |          | Cre    | Credits Assigned |       |
| Code    |                                            | Theory                             | Tutorial | Theory | <b>Tutorial</b>  | Total |
| ILO8027 | IPR and Patenting<br>(abbreviated as IPRP) | 3                                  | -        | 3      | )-               | 3     |

|         |                   |         |           | Exa   | mination | Scheme   |      |       |
|---------|-------------------|---------|-----------|-------|----------|----------|------|-------|
| Course  |                   |         |           | Theor | у        |          |      |       |
| code    | Course Name       | Interna | al Assess | ment  | End      | Exam     | Term | Total |
| couc    |                   | Test 1  | Test 2    | Ava   | Sem.     | Duration | Work | 10101 |
|         |                   | I est I | I est 2   | Avg.  | Exam     | (Hrs.)   |      |       |
| ILO8027 | IPR and Patenting | 20      | 20        | 20    | 80       | 03       | -    | 100   |
|         |                   |         |           |       |          |          |      |       |

|                    | • To understand intellectual property rights protection system                |
|--------------------|-------------------------------------------------------------------------------|
| <b>a</b>           | • To promote the knowledge of Intellectual Property Laws of India as well     |
| Course             | as International treaty procedures                                            |
| Objectives         | • To get acquaintance with Patent search and patent filing procedure and      |
|                    | • applications                                                                |
|                    | Student will be able to                                                       |
| Course             | understand Intellectual Property assets                                       |
| Course<br>Outcomes | <ul> <li>assist individuals and organizations in capacity building</li> </ul> |
| Outcomes           | • work for development, promotion, protection, compliance, and                |
|                    | enforcement of Intellectual Property and Patenting                            |
|                    |                                                                               |

| Module | Contents                                                               | Hours |
|--------|------------------------------------------------------------------------|-------|
| 1      | Introduction to Intellectual Property Rights (IPR): Meaning of IPR,    | 05    |
|        | Different category of IPR instruments - Patents, Trademarks,           |       |
|        | Copyrights, Industrial Designs, Plant variety protection, Geographical |       |
|        | indications, Transfer of technology etc.                               |       |
|        | Importance of IPR in Modern Global Economic Environment:               |       |
|        | Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR  |       |
|        | as an instrument of development                                        |       |
| 2      | Enforcement of Intellectual Property Rights: Introduction, Magnitude   | 07    |
|        | of problem, Factors that create and sustain counterfeiting/piracy,     |       |
|        | International agreements, International organizations (e.g. WIPO, WTO) |       |
|        | activein IPR enforcement                                               |       |
|        | Indian Scenario of IPR: Introduction, History of IPR in India,         |       |
|        | Overview of IP laws in India, Indian IPR, Administrative Machinery,    |       |
|        | Major international treaties signed by India, Procedure for submitting |       |
|        | patent and Enforcement of IPR at national level etc.                   |       |
| 3      | Emerging Issues in IPR: Challenges for IP in digital economy, e-       | 06    |
|        | commerce, human genome, biodiversity and traditional knowledge etc.    |       |
| 4      | Basics of Patents: Definition of Patents, Conditions of patentability, | 07    |
|        | Patentable and non-patentable inventions, Types of patent applications |       |

|   | (e.g. Patent of addition etc), Process Patent and Product Patent,<br>Precautions while patenting, Patent specification Patent claims,<br>Disclosures and non-disclosures, Patent rights and infringement, Method<br>of getting a patent |    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | Patent Rules: Indian patent act, European scenario, US scenario,                                                                                                                                                                        | 08 |
|   | Australia scenario, Japan scenario, Chinese scenario, Multilateral                                                                                                                                                                      |    |
|   | treaties where India is a member (TRIPS agreement, Paris convention                                                                                                                                                                     |    |
|   | etc.)                                                                                                                                                                                                                                   |    |
| 6 | Procedure for Filing a Patent (National and International):                                                                                                                                                                             | 07 |
|   | Legislation and Salient Features, Patent Search, Drafting and Filing                                                                                                                                                                    | •  |
|   | Patent Applications, Processing of patent, Patent Litigation, Patent                                                                                                                                                                    |    |
|   | Publicationetc, Time frame and cost, Patent Licensing, Patent                                                                                                                                                                           |    |
|   | Infringement                                                                                                                                                                                                                            |    |
|   | Patent databases: Important websites, Searching international                                                                                                                                                                           |    |
|   | databases                                                                                                                                                                                                                               |    |

#### **Reference Books:**

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield,2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph&Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7<sup>th</sup> Edition, Sweet & Maxwell
- 6. LousHarns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3<sup>rd</sup> Edition, WIPO
- 7. PrabhuddhaGanguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar andmohdIqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. KompalBansal and PraishitBansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, PritiMathur, AnshulRathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET

15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

|                | Univ                                                   | ersity of M | umbai                                            |        |                  |       |
|----------------|--------------------------------------------------------|-------------|--------------------------------------------------|--------|------------------|-------|
| Course<br>Code | <b>Course Name</b>                                     |             | aching Scheme<br>Contact Hours) Credits Assigned |        | Credits Assigned |       |
| Code           |                                                        | Theory      | Tutorial                                         | Theory | <b>Tutorial</b>  | Total |
| ILO8028        | Digital Business<br>Management<br>(abbreviated as DBM) | 3           | -                                                | 3      | -                | 3     |

| ILO8028        | LO8028 Management<br>(abbreviated as DBM) |                                     | 3      |      | -            | 3                  |      | 3     |
|----------------|-------------------------------------------|-------------------------------------|--------|------|--------------|--------------------|------|-------|
|                |                                           |                                     |        | Exa  | mination     | Scheme             |      | 63    |
| Course<br>code | Course Name                               | Theorem Theorem Internal Assessment |        |      | End          | Exam               | Term | Total |
| ••••           |                                           | Test 1                              | Test 2 | Avg. | Sem.<br>Exam | Duration<br>(Hrs.) | Work | 1000  |
| ILO8028        | Digital Business<br>Management            | 20                                  | 20     | 20   | 80           | 03                 | -    | 100   |
|                |                                           |                                     |        |      |              |                    |      |       |

| ~                  | • To familiarize with digital business concept                    |
|--------------------|-------------------------------------------------------------------|
| Course             | • To acquaint with E-commerce                                     |
| Objectives         | • To give insights into E-business and its strategies             |
|                    | Student will be able to                                           |
| Course             | • Identify drivers of digital business                            |
| Course<br>Outcomes | • Illustrate various approaches and techniques for E-business and |
| Outcomes           | management                                                        |
|                    | • Prepare E-business plan                                         |
|                    |                                                                   |

| Module | Contents                                                               | Hours |
|--------|------------------------------------------------------------------------|-------|
| 1      | Introduction to Digital Business: Introduction, Background and         | 09    |
|        | current status, E-market places, structures, mechanisms, economics and |       |
|        | impacts Difference between physical economy and digital economy,       |       |
|        | Drivers of digital business- Big Data & Analytics, Mobile, Cloud       |       |
|        | Computing, Social media, BYOD, and Internet of Things(digitally        |       |
| (      | intelligent machines/services) Opportunities and Challenges in Digital |       |
|        | Business,                                                              |       |
| 2      | Overview of E-Commerce: E-Commerce- Meaning, Retailing in e-           | 06    |
|        | commerce-products and services, consumer behavior, market research     |       |
|        | and advertisement B2B-E-commerce-selling and buying in private e-      |       |
|        | markets, public B2B exchanges and support services, e-supply chains,   |       |
|        | Collaborative Commerce, Intra business EC and Corporate portals Other  |       |
|        | E-C models and applications, innovative EC System-From E-              |       |
|        | government and learning to C2C, mobile commerce and pervasive          |       |
|        | computing EC Strategy and Implementation-EC strategy and global EC,    |       |
|        | Economics and Justification of EC, Using Affiliate marketing to        |       |
|        | promote your e-commerce business, Launching a successful online        |       |
|        | business and EC project, Legal, Ethics and Societal impacts of EC      |       |
| 3      | Digital Business Support services: ERP as e -business backbone,        | 06    |
|        | knowledge Tope Apps, Information and referral system, Application      |       |
|        | Development: Building Digital business Applications and Infrastructure |       |

| 4 | Managing E-Business-Managing Knowledge, Management skills for           | 06 |  |
|---|-------------------------------------------------------------------------|----|--|
|   | e-business, Managing Risks in e -business, Security Threats to e-       |    |  |
|   | business -Security Overview, Electronic Commerce Threats, Encryption,   |    |  |
|   | ryptography, Public Key and Private Key Cryptography, Digital           |    |  |
|   | Signatures, Digital Certificates, Security Protocols over Public        |    |  |
|   | Networks: HTTP, SSL, Firewall as Security Control, Public Key           |    |  |
|   | Infrastructure (PKI) for Security, Prominent Cryptographic Applications |    |  |
| 5 | E-Business Strategy-E-business Strategic formulation- Analysis of       | 04 |  |
|   | Company's Internal and external environment, Selection of strategy,     |    |  |
|   | E-business strategy into Action, challenges and E-Transition            | •  |  |
|   | (Process of Digital Transformation)                                     |    |  |
| 6 | M Materializing e-business: From Idea to Realization-Business plan      | 08 |  |
|   | preparation                                                             |    |  |
|   | Case Studies and presentations                                          |    |  |

#### **Reference Books:**

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6<sup>th</sup> Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2<sup>nd</sup> Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, Vinocenzo Morabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2<sup>nd</sup> International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u> OECD Publishing

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| University of Mumbai |                                                     |        |                       |                  |                  |       |  |
|----------------------|-----------------------------------------------------|--------|-----------------------|------------------|------------------|-------|--|
| Course<br>Code       | Course Name                                         |        | g Scheme<br>et Hours) | Credits Assigned |                  |       |  |
| Code                 |                                                     | Theory | Tutorial              | Theory           | <b>Tutoria</b> l | Total |  |
| ILO8029              | Environmental<br>Management<br>(abbreviated as EVM) | 3      | -                     | 3                | <u> </u>         | 3     |  |

|         |               |         | Examination Scheme  |       |      |          |      |       |
|---------|---------------|---------|---------------------|-------|------|----------|------|-------|
| Course  | Course Name   |         |                     | Theor | y    |          |      |       |
| code    |               | Interna | Internal Assessment |       |      | Exam     | Term | Total |
| coue    |               | Test 1  | Test 2              | Avg.  | Sem. | Duration | Work | Total |
|         |               | 1050 1  | 1030 2              | Avg.  | Exam | (Hrs.)   |      |       |
| ILO8029 | Environmental | 20      | 20                  | 20    | 80   | 03       |      | 100   |
| IL08029 | Management    | 20      | 20                  | 20    | 80   | 03       | -    | 100   |
|         |               |         |                     |       |      |          |      |       |

|            | • Understand and identify environmental issues relevant to India and global   |
|------------|-------------------------------------------------------------------------------|
| C          | concerns                                                                      |
| Course     | concerns                                                                      |
| Objectives | • Learn concepts of ecology                                                   |
|            | Familiarise environment related legislations                                  |
|            | Student will be able to                                                       |
| Course     | • Understand the concept of environmental management                          |
| Outcomes   | • Understand ecosystem and interdependence, food chain etc.                   |
|            | <ul> <li>Understand and interpret environment related legislations</li> </ul> |
|            |                                                                               |

|   | Module | Contents                                                                                                                                                                                            | Hours |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | 1      | Introduction and Definition of Environment: Significance of                                                                                                                                         | 10    |
|   |        | Environment Management for contemporary managers, Career                                                                                                                                            |       |
|   |        | opportunities.                                                                                                                                                                                      |       |
|   |        | Environmental issues relevant to India, Sustainable Development, The                                                                                                                                |       |
|   |        | Energy scenario.                                                                                                                                                                                    |       |
|   | 2      | Global Environmental concerns : Global Warming, Acid Rain, Ozone<br>Depletion, Hazardous Wastes, Endangered life-species, Loss of<br>Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical | 06    |
|   |        | hazards, etc.                                                                                                                                                                                       |       |
|   | 3      | Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.                                                       | 05    |
|   | 4      | Scope of Environment Management, Role & functions of Government as a planning and regulating agency.                                                                                                | 10    |
| ~ | *      | Environment Quality Management and Corporate Environmental Responsibility                                                                                                                           |       |
| Ŧ | 5      | Total Quality Environmental Management, ISO-14000, EMS certification.                                                                                                                               | 05    |
|   | 6      | General overview of major legislations like Environment Protection Act,<br>Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest<br>Act, Factories Act, etc.                        | 03    |

#### **Reference Books:**

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3<sup>rd</sup> Ed. Access Publishing.2015

#### Assessment:

Internal Assessment consists of two tests out of which; one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total four questions need to be solved.
- 3: Q.1 will be compulsory, based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining question will be randomly selected from all the modules.

| Subject<br>code | Subject Name                                    | Teaching scheme |        |      |        | Credit assigned |       |
|-----------------|-------------------------------------------------|-----------------|--------|------|--------|-----------------|-------|
|                 | Instrumentation<br>Project                      | Theory          | Pract. | Tut. | Theory | Pract. Tut.     | Total |
| ISL801          | Documentation<br>and Execution-<br>Lab Practice | -               | 2      | -    | -      |                 |       |

|             | -                                                                             |       |          |            |                    |              |                       |      |       |
|-------------|-------------------------------------------------------------------------------|-------|----------|------------|--------------------|--------------|-----------------------|------|-------|
|             |                                                                               |       |          |            | Examina            | tion scher   | ne                    |      |       |
|             |                                                                               |       | Theory(  | out of 100 | )                  | S            |                       |      |       |
| Sub<br>Code | Subject Name                                                                  | Inter | nal Asse | ssment     | End<br>sem<br>exam | Term<br>work | Pract.<br>And<br>oral | Oral | Total |
|             |                                                                               | Test1 | Test2    | Avg.       |                    |              |                       |      |       |
| ISL801      | Instrumentation<br>Project<br>Documentation<br>and Execution-<br>Lab Practice | -     | -        | 3          |                    | 25           | -                     | 25   | 50    |

| Subject Code     | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Credits                                              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| ISL801           | Instrumentation Project Documentation and Execution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                    |
| Course objective | <ol> <li>To provide knowledge of types and execution of I&amp;C type pro</li> <li>This Course aims to explain Project deliverables and executivities of project documentation.</li> <li>To get acquainted with commercial software used for documentation</li> </ol>                                                                                                                                                                                                                                                                                                                                                                          | engineering                                          |
| Course Outcome   | <ol> <li>The students will able to</li> <li>Apply standards used in instrumentation project for prep deliverables.</li> <li>Interpret, design and construct documents such as PFD, Pa sheet.</li> <li>Apply ISA specification data sheet / loop standard, to prepare specification sheet and construct loop wiring diagram.</li> <li>Interpret, design and construct Hook-up diagram, and deve prepare different project schedule.</li> <li>Select and apply procurement, installation procedure commissioning and commissioning activities with Inspection.</li> <li>Select and support documentation software packages used in i</li> </ol> | &ID, Index<br>Instrument<br>lop skill to<br>and pre- |

Syllabus: Same as that of Subject ISC801 Instrumentation Project Documentation and Execution.

## List of Laboratory Experiments/ Assignments:

| Sr. | Detailed Content                                                                                                                                  | CO Mapping |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| No. |                                                                                                                                                   | 11 8       |
| 1   | Summarize instrument/unit symbols and identification, tagging and line designation procedure from ISA/ANSII Standard                              | CO1        |
| 2   | Apply symbols and identification standard for preparation of graphical document such as Process Flow Diagrams.                                    | CO2        |
| 3   | To develop of Piping & Instrumentation Diagram using PFD of Expt-2.                                                                               | CO2        |
| 4   | Prepare instrument index sheet for tags used in P&ID of Expt-3.                                                                                   | CO2        |
| 5   | Prepare ISA specification forms (for temperature, pressure, level ,flow instruments, CV)                                                          | CO3        |
| 6   | Develop loop wiring diagram of pneumatic and electronic loops.                                                                                    | CO3        |
| 7   | Develop sample hook-up drawing and prepare BOM.                                                                                                   | CO4        |
| 8   | Study and Development of Detailed Engineering schedules.( Project schedule / Cable schedule / JB schedule / AH schedule )                         | CO4        |
| 9   | Learn procedure to perform pre-commissioning activities.( Hydro Test / Loop checking / Trouble shooting /calibration of DPT or Control valve etc) | CO5        |
| 10  | Survey of instrumentation software and study different features                                                                                   | CO6        |

## **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

## Term Work:

Term work shall consist of Laboratory work which includes minimum study of eight experiments/ assignments / Creation of Documents

Other task: (Optional) Visit to any one Engineering consultants office /organizations to understand their Working Environment & submission of Report.

| The distribution of marks for term work shall be as follows: |            |
|--------------------------------------------------------------|------------|
| Laboratory work (Experiments/Assignments)                    | : 10 Marks |
| Laboratory work (programs / journal)                         | : 10 Marks |
| Attendance (Theory and Practical)                            | : 05 Marks |
|                                                              |            |

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>code     | Subject<br>Name | Teaching scheme |        |      | Credit assigned |        |      |       |  |  |
|---------------------|-----------------|-----------------|--------|------|-----------------|--------|------|-------|--|--|
| ISL 803 System- Lab |                 | Theory          | Pract. | Tut. | Theory          | Pract. | Tut. | Total |  |  |
|                     | Practice        | -               | 2      | -    | -               | 1      | -    | 1     |  |  |
|                     |                 |                 |        |      |                 |        |      |       |  |  |

|          | Subject Name          | Examination scheme  |         |           |                    |              |                       |      |       |  |  |
|----------|-----------------------|---------------------|---------|-----------|--------------------|--------------|-----------------------|------|-------|--|--|
|          |                       |                     | Theory( | out of 10 | ))                 |              |                       |      |       |  |  |
| Sub Code |                       | Internal Assessment |         |           | End<br>sem<br>exam | Term<br>work | Pract.<br>And<br>oral | Oral | Total |  |  |
|          |                       | Test1               | Test2   | Avg.      |                    |              |                       |      |       |  |  |
| ISL 803  | Expert<br>System- Lab | -                   | -       | -         |                    | 25           | 3                     | 25   | 50    |  |  |
|          | Practice              |                     |         |           |                    |              |                       |      |       |  |  |
|          |                       |                     |         |           |                    |              |                       |      |       |  |  |

#### List of Laboratory Experiments/ Assignments:

| Sr. | Detailed                                           | CO         |
|-----|----------------------------------------------------|------------|
| No. | Content                                            | Mapping    |
| 1   | Example for Perceptron learning                    | CO1        |
| 2   | Multilayer Feedforward neural networks             | CO1        |
| 3   | Hopfield model for pattern storage task            | <b>CO1</b> |
| 4   | Solution to travelling salesman problem using ANN  | <b>CO1</b> |
| 5   | Temperature controller using Fuzzy logic           | CO2        |
| 6   | Washing machine control using Fuzzy logic          | CO2        |
| 7   | Design of PID control using ANN and Fuzzy Toolbox. | CO4        |
| 8   | Assignment on Expert systems                       | CO3        |
| 9   | Assignment on Expert Systems                       | CO3        |
| 10  | Assignment on Genetic algorithm                    | CO5        |
| 11  | Assignment on Hybrid control schemes               | CO6        |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

## **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

## Term Work:

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignments) | : 10 Marks |
|-------------------------------------------|------------|
| Laboratory work (programs / journal)      | : 10 Marks |
| Attendance                                | : 5 Marks  |

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

University of Mumbai, Instrumentation Engineering, Rev 2016-17 115

| Subject<br>code | Subject Name               | Те     | aching schem | ie   | Credit assigned |        |      |       |
|-----------------|----------------------------|--------|--------------|------|-----------------|--------|------|-------|
| ISL803          | Internet of<br>Things- Lab | Theory | Pract.       | Tut. | Theory          | Pract. | Tut. | Total |
| 182000          | Practice                   | -      | 02           | -    | -               | 1      | -    | 1     |

|             |                                        |                     |       |      | Examinati   | on scheme     |      |       |       |
|-------------|----------------------------------------|---------------------|-------|------|-------------|---------------|------|-------|-------|
| Sub<br>Code | Subject Name                           | Internal Assessment |       | End  | Term        | Pract.<br>And | Oral | Total |       |
|             |                                        | Test1               | Test2 | Avg. | Sem<br>Exam | work          | oral | Orar  | Total |
| ISL803      | Internet of<br>Things- Lab<br>Practice | -                   | -     | -    | 0           | 25            | 5    | 25    | 50    |
|             |                                        |                     |       |      |             | C             | ~    |       |       |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credits      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ISL803            | Internet of Things- Lab Practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            |
| Course objectives | <ol> <li>To impart knowledge about fundamentals of IoT</li> <li>To describe data and knowledge management and use of device<br/>technology.</li> <li>To give knowledge of IoT architecture and Integration of ember<br/>devices with IoT</li> <li>To explain the concept of IIoT.</li> <li>To impart knowledge about designing of industrial internet syst</li> <li>To describe overview of Android/ IOS app development tools a<br/>of Everything</li> </ol>                                                                      | dded<br>ems. |
| Course Outcomes   | <ol> <li>The students will be able to :</li> <li>Use microcontroller based embedded platforms in IOT</li> <li>Use microprocessor based embedded platforms in IOT</li> <li>Use wireless peripherals for exchange of data.</li> <li>Make use of Cloud platform to upload and analyse any sensor data</li> <li>Use of Devices, Gateways and Data Management in IoT.</li> <li>Use the knowledge and skills acquired during the course to build ar complete, working IoT system involving prototyping, programming analysis.</li> </ol> | nd test a    |

# Syllabus: Same as that of Subject ISDLO8043 Internet of Things.

## List of Suggested Laboratory Experiments:

| Sr. No. | Detailed Content                                               | CO Mapping |
|---------|----------------------------------------------------------------|------------|
| 1       | Introduction to Arduino platform and programming               | CO1        |
| 2       | Interfacing Arduino to Zigbee module                           | CO1,CO3    |
| 3       | Interfacing Arduino to GSM module                              | CO1,CO3    |
| 4       | Interfacing Arduino to Bluetooth Module                        | CO1,CO3    |
| 5       | Introduction to Raspberry PI platform and python programming   | CO2        |
|         | University of Mumbai, Instrumentation Engineering, Rev 2016-17 |            |

| 6  | Interfacing sensors to Raspberry PI                             | CO2         |
|----|-----------------------------------------------------------------|-------------|
| 7  | Communicate between Arduino and Raspberry PI using any wireless | CO1,CO2,CO3 |
|    | medium                                                          |             |
| 8  | Setup a cloud platform to log the data                          | CO4         |
| 9  | Log Data using Raspberry PI and upload to the cloud platform    | CO5         |
| 10 | Design an IOT based system                                      | CO6         |

Any other additional experiment based on syllabus which will help students to understand topic/concept

## **Practical/Oral Examination:**

Practical/Oral examination will be based on entire syllabus.

## **Term Work:**

Term work shall consist of minimum 08 experiments from the above given list and 02 assignments from imaging techniques module and electrical safety module.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments) Laboratory work (programs /journal) Attendance

: 10 Marks : 10 Marks : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

| Subject<br>Code | Subject Name                   | Teaching Scheme |        |      | Credits Assigned |        |      |       |  |
|-----------------|--------------------------------|-----------------|--------|------|------------------|--------|------|-------|--|
| ISL803          | Power Plant<br>Instrumentation | Theory          | Pract. | Tut. | Theory           | Pract. | Tut. | Total |  |
|                 | -Lab Practice                  | -               | 2      | -    | -                | 1      | -    | 1     |  |

|          |                                                     | Examination scheme  |        |      |            |      |               |                        |        |  |
|----------|-----------------------------------------------------|---------------------|--------|------|------------|------|---------------|------------------------|--------|--|
| Sub Code | Subject Name                                        | Internal Assessment |        |      | End<br>Sem | Term | Pract.<br>and | Oral                   | Total  |  |
|          |                                                     | Test 1              | Test 2 | Avg. | Exam       | work | Oral          |                        | i otai |  |
| ISL803   | Power Plant<br>Instrumentatio<br>n- Lab<br>Practice | -                   | -      | -    |            | 25   | 2             | <b>O</b> <sub>25</sub> | 50     |  |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                                                                         | Credits            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ISL803            | Power Plant Instrumentation- Lab Practice                                                                                                                                                                                                                                                                                                                                                                                            | 1                  |
| Course objectives | <ul> <li>To create awareness of energy resources and its scenario in India and</li> <li>1. To study the concept of power generation using various resou</li> <li>2. To study the role of Instrumentation in various power plants.</li> <li>3. To study and compare various power plants for optimal performance.</li> <li>4. To acquire students the knowledge about hazards and safety in the statement of the students.</li> </ul> | irces.<br>ormance. |
| Course Outcomes   | <ul> <li>The students will be able to:</li> <li>1. Identify the energy sources and explain power generation.</li> <li>2. Describe operation and control of various equipment in therm</li> <li>3. Select the sites for hydroelectric power plants and explain its</li> <li>4. Explain the power generation and control of Nuclear power p</li> <li>5. Describe the non-conventional energy resources.</li> </ul>                     | operation.         |
|                   | 6. Compare different types of power plants.                                                                                                                                                                                                                                                                                                                                                                                          |                    |

Syllabus: Same as that of Subject ISDLO8044 Power Plant Instrumentation.

## List of Laboratory Experiments/ Assignments:

| Sr.<br>No. | Detailed Content                                              | CO Mapping |
|------------|---------------------------------------------------------------|------------|
| 1          | Assignment on Energy Sources                                  | CO1        |
| 2          | Assignment on Thermal Power plant                             | CO2        |
| 3          | Assignment on Hydroelectric power plant                       | CO3        |
| 4          | Assignment on Nuclear Power plant                             | CO4        |
| 5          | Assignment on Nonconventional Energy Resources                | C05        |
| 6          | Assignment on Comparison of various power plants              | CO6        |
| 7          | Assignment on Introduction to Hybrid Power generation concept | CO6        |

Additional experiments/assignments based on syllabus which will help students to understand topic/concept can be considered.

## **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### **Term Work:**

Term work shall consist of minimum four experiments and four assignments.

The distribution of marks for term work shall be as follows:

| Laboratory work (Experiments/assignments) | : 10 Marks |
|-------------------------------------------|------------|
| Laboratory work (programs / journal)      | : 10 Marks |
| Attendance                                | : 5 Marks  |

The final certification and acceptance of term work ensures the satisfactory performance of

Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject Name              | Те     | aching schem | heme Credit assigned |        |             |       |
|-----------------|---------------------------|--------|--------------|----------------------|--------|-------------|-------|
| ISL803          | Functional<br>Safety- Lab | Theory | Pract.       | Tut.                 | Theory | Pract. Tut. | Total |
| 151.005         | Practice                  | -      | 02           | -                    | -      | 1 -         | 1     |
|                 |                           |        |              |                      |        |             | 0     |

| Sub<br>Code |                                        |                        |       |      | Examinati   | on scheme |               |      |        |
|-------------|----------------------------------------|------------------------|-------|------|-------------|-----------|---------------|------|--------|
|             | Subject Name                           | Internal Assessment Er |       |      | End         | Term      | Pract.<br>And | Oral | Total  |
|             |                                        | Test1                  | Test2 | Avg. | Sem<br>Exam | work      | oral          |      | I Utai |
| ISL803      | Functional<br>Safety - Lab<br>Practice | -                      | -     | -    | <u> </u>    | 25        |               | 25   | 50     |

| Subject Code      | Subject Name                                                                                                                                                                                                                                                                                                                                                                            | Credits     |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| ISL803            | Functional Safety- Lab Practice1                                                                                                                                                                                                                                                                                                                                                        |             |  |  |  |  |  |
| Course objectives | To make the students aware of basic concepts of safety instrumented system, standards and risk analysis techniques.                                                                                                                                                                                                                                                                     |             |  |  |  |  |  |
| Course Outcomes   | <ul> <li>The students will be able to</li> <li>1. Define the role of Safety instrumented system</li> <li>2. Describe steps involved in Safety life cycle</li> <li>3. Explain process and safety control with SIS te</li> <li>4. Learn types of events and combined probabilit</li> <li>5. Identify and analyse the hazards</li> <li>6. Determine the Safety integrity level.</li> </ul> | chnologies. |  |  |  |  |  |

Syllabus: Same as that of Subject ISDLO8045 Functional Safety.

# List of Laboratory Experiments/ Assignments:

| Sr. | Detailed Content                                                                     | CO Mapping   |
|-----|--------------------------------------------------------------------------------------|--------------|
| No. |                                                                                      | e e souppoig |
| 1   | Assignment on Introduction to Functional safety                                      | CO1          |
| 2   | Assignment on Safety Life cycle                                                      | CO2          |
| 3   | Assignment on Protection layers and SIS technologies                                 | CO3          |
| 4   | Assignment on Rules of Probability- types of events, numerical                       | CO4          |
| 5   | Assignment on Rules of Probability – numerical on event tree and fault tree analysis | CO4          |
| 6   | Assignment on Consequence analysis                                                   | CO5          |
| 7   | Assignment on Process hazard                                                         | CO5          |
| 8   | Assignment on SIL determination methods                                              | CO6          |
| 9   | Assignment on Fault propagation modelling techniques using Excel                     | CO5          |
| 10  | Assignment on SIL determination using Excel                                          | CO6          |
| 11  | Case study                                                                           | CO1-CO6      |

Any other additional experiments/assignments based on syllabus which will help students to understand topic/concept.

> Industry visit is advised to understand the Functional Safety subject.

#### **Practical/Oral Examination:**

Oral examination will be based on entire syllabus.

#### **Term Work:**

Term work shall consist of minimum eight assignments.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) : 10 Marks

Laboratory work (programs / journal) : 10 Marks

Attendance

The final certification and acceptance of term work ensures the satisfactory performance of

: 5 Marks

Laboratory work and minimum passing in the term work.

| Subject<br>code | Subject<br>Name | Teaching scheme    |    |   | Credit assigned |        |      |       |
|-----------------|-----------------|--------------------|----|---|-----------------|--------|------|-------|
| ISL804          | Project-II      | Theory Pract. Tut. |    |   | Theory          | Pract. | Tut. | Total |
|                 |                 | -                  | 12 | - | -               | 6      | -    | 6     |

| Sub           | Subject    | Examination scheme |                         |      |       |      |       |    |     |  |
|---------------|------------|--------------------|-------------------------|------|-------|------|-------|----|-----|--|
| Code          | Name       | Theory (           | (out of 10              | Term | Pract | Oral | Total |    |     |  |
|               |            | Internal           | Internal Assessment End |      |       | work | . and |    |     |  |
|               |            | Test1              | Test2                   | Avg. | sem   |      | Oral  |    |     |  |
|               |            |                    |                         |      | Exam  |      |       |    |     |  |
| <b>ISL804</b> | Project-II | -                  | -                       | -    | -     | 100  | -     | 50 | 150 |  |

## Term Work:

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- 1. Scope and objective of the project work.
- 2. Extensive Literature survey.
- 3. Progress of the work (Continuous assessment)
- 4. Design, implementation, and analysis of the project work.
- 5. Results, conclusions and future scope.
- 6. Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.