<u>AC 7/6/2014</u> Item No. – 4.23

UNIVERSITY OF MUMBAI

Bachelor of Engineering

Biomedical Engineering (Third Year Sem V & VI)

Revised Course (Rev- 2012)

With effect from Academic Year 2014 -15

<u>Under</u>

FACULTY OF TECHNOLOGY

(As per Semester Based Credit and Grading System)

Page 1

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and Course objectives and Course outcomes to be clearly defined for each Course, so that all faculty members in affiliated institutes understand the depth and approach of Course to be taught, which will enhance Learners's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Semester based Credit and Grading system enables a much-required shift in focus from teachercentric to Learners-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade Learners's performance. Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble

The overall technical education in our country is changing rapidly in manifolds. Now it is very much challenging to maintain the quality of education with its rate of expansion. To meet present requirement a systematic approach is necessary to build the strong technical base with the quality. Accreditation will provide the quality assurance in higher education and also to achieve recognition of the institution or program meeting certain specified standards. The main focus of an accreditation process is to measure the program outcomes, essentially a range of skills and knowledge that a Learner will have at the time of graduation from the program that is being accredited. Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electrical Engineering of University of Mumbai, happy to state here that, Program Educational Objectives (PEOs) were finalized for undergraduate program in Electrical Engineering, more than twenty senior faculty members from the different institutes affiliated to University of Mumbai were actively participated in this process. Few PEOs were finalized for undergraduate program in Electrical Engineering are listed below;

- To provide the overall strong technical foundation to formulate, solve and analyse engineering problems during undergraduate program.
- To prepare Learners to demonstrate an ability to identify, formulate and solve electrical based issues.
- To prepare Learners to demonstrate an ability in the area of design, control, analyse and interpret the electrical and electronics systems.
- To prepare Learners for successful career in industry, research and development.
- To develop the ability among Learners for supervisory control and data acquisition for power system application.
- To provide opportunity for Learners to handle the multidisciplinary projects.
- To create the awareness of the life-long learning and to introduce them to professional ethics and codes of professional practice.

The affiliated institutes may include their own PEOs in addition to the above list

To support the philosophy of outcome based education, in addition to stated PEOs, objectives and expected outcomes are also included in the curriculum. I know, this is a small step taken to enhance and provide the quality education to the stake holders.

Dr. M. V. Bhatkar Chairman, Board of Studies in Electrical Engineering, University of Mumbai

Course	Course Name	Tea	ching Sche	eme	Credits Assigned					
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC501	Biomedical Instrumentation-I	4	2	-	4	1		5		
BMC502	Microprocessors	4	2	-	4	1		5		
BMC503	Analog and Digital Circuits Design	4	2	-	4	1		5		
BMC504	Biomedical Digital Signal Processing	4	2	-	4	1 *	-	5		
BMC505	Principles of Communication Engineering	4	2	-	4	1	-	5		
BML506	Business Communication and Ethics	-	2*+2			2	-	2		
	TOTAL	20	14		20	7	-	27		

Syllabus Scheme for T.E. Semester V Biomedical Engineering

Image: BMC501Biomedical Instrumentation-I202020208025-2515BMC502Microprocessors202020208025-2515BMC503Analog and Digital Circuits Design202020208025-16BMC504Biomedical Digital Signal Processing202020208025-15BMC505Communication Engineering2020208025-15BMC505Design202020208025-15BMC505BMC505Communication Engineering2020208025-15BMC505Communication Engineering2020208025-15BMC505Communication Engineering2020208025-15BMC505Communication Engineering2020208025-15	* Theory for	* Theory for entire class to be conducted								
Course NameInternal AssessmentEnd Sem examTerm workPract.OralToBMC501Biomedical Instrumentation-I20202080252513BMC502Microprocessors202020802514BMC503Analog and Digital Circuits Design202020802514BMC504Biomedical Digital Signal Processing202020802514BMC505Biomedical Digital Signal Processing202020802514BMC505Biomedical Digital Signal Principles of Communication202020802514BMC505Business Communication Engineering202020802514BML 506Business Communication202020802514BML 506Business Communication202020802514BML 506Business Communication202020802514BML 506Business Communication202020802514BML 506Business Communication20202020802514BML 506Business Communication20202020202020202020					Exa	minatio	n scheme	9		
CodeInternal AssessmentEnd Sem Form workPract.OralToBMC501Biomedical Instrumentation-I202020208025-2515BMC502Microprocessors202020208025-2515BMC503Analog and Digital Circuits Design202020208025-16BMC504Biomedical Digital Signal 	Course	Course Nome		Theory	Marks		Torm			
Image: BMC501Biomedical Instrumentation-IImage: Construction of the	Code	Course Maine	Inter	nal Asses	ssment			Pract.	Oral	Total
BMC501Instrumentation-I202020208025-2513BMC502Microprocessors20202020802513BMC503Analog and Digital Circuits Design20202020802525-14BMC504Biomedical Digital Signal Processing202020208025-2514BMC505Communication Engineering2020208025-2514BMC505Business Communication2020208025-14BML506Business Communication2020208025-14			Test 1	Test 2	Avg.		work			
BMC503Analog and Digital Circuits Design20202020802525-15BMC504Biomedical Digital Signal Processing202020208025-15BMC505Principles of Engineering202020208025-15BML 506Business Communication202020208025-15	BMC501		20	20	20	80	25	-	25	150
BMC503Design20202020802525-15BMC504Biomedical Digital Signal Processing202020208025-2515BMC505Principles of Communication Engineering202020208025-15BML 506Business Communication20202020802515	BMC502	Microprocessors	20	20	20	80	25	-	-	125
BMC504Processing20202020202025-2515Principles of BMC505Communication Engineering20202020802515BML 506Business Communication20202020802515	BMC503		20	20	20	80	25	25	-	150
BMC505Communication Engineering202020208025-12BML 506Business CommunicationImage: Second	BMC504	Processing	20	20	20	80	25	-	25	150
	BMC505	Communication	20	20	20	80	25	-	-	125
	BML506		-	-	-	-	50	-	-	50
TOTAL 100 400 175 25 50 75	\mathbf{N}	TOTAL			100	400	175	25	50	750

Course	Course Name	Teac	ching Sch	eme	C	redits As	signed	
Code	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC601	Biomedical Instrumentation –II	4	2	-	4	1		5
BMC602	Biostatistics	4	-	1	4	-	1	5
BMC603	Biological Modeling and Simulation	3	2	-	3	1		4
BMC604	Microcontrollers and Embedded Systems	4	2	-	4	1 🔶	-	5
BMC605	Medical Imaging –I	3	2	-	3	1	-	4
BMC606	Digital Image Processing	4	2	-	4	1	-	5
	TOTAL	22	10	1	22	5	1	28

Syllabus Scheme for T.E. Semester VI Biomedical Engineering

				Ex	aminati	on schen	ne		
Course	Comment Norma		Theory I	Marks		T			
Code	Course Name	Intern	ment	End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam	WUIK			
BMC601	Biomedical Instrumentation –II	20	20	20	80	25	25	-	150
BMC602	Biostatistics	20	20	20	80	25	-	-	125
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150
BMC605	Medical Imaging –I	20	20	20	80	25	-	25	150
BMC606	Digital Image Processing	20	20	20	80	25	25	-	150
	TOTAL			120	480	150	50	50	850

ß

Course	Course Name	Tea	ching Sche	eme	Credits Assigned					
Code	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC501	Biomedical Instrumentation-I	4	2	-	4	1		5		
BMC502	Microprocessors	4	2	-	4	1		5		
BMC503	Analog and Digital Circuits Design	4	2	-	4	1		5		
BMC504	Biomedical Digital Signal Processing	4	2	-	4	1 *	-	5		
BMC505	Principles of Communication Engineering	4	2	-	4	1	-	5		
BML506	Business Communication and Ethics	-	2*+2			2	-	2		
	TOTAL	20	14		20	7	-	27		

Syllabus Scheme for T.E. Semester V Biomedical Engineering

Image: Normal systemTest 1Test 2Avg.Sem examworkmmBMC501Biomedical Instrumentation-I202020208025-251BMC502Microprocessors2020202080251BMC503Analog and Digital Circuits Design20202020802525-1BMC504Biomedical Digital Signal Processing202020208025-251BMC505Communication Engineering202020208025-1BMC505Communication Engineering2020208025-1	* Theory for	* Theory for entire class to be conducted								
Course NameInternal AssessmentEnd Sem examTerm workPract.OralTBMC501Biomedical Instrumentation-I2020208025-251BMC502Microprocessors2020208025-251BMC503Analog and Digital Circuits Design202020802525-1BMC504Biomedical Digital Signal Processing2020208025-1BMC505Communication Engineering2020208025-1BML 506Business Communication2020208025-1					Exa	minatio	n scheme	9		
CodeInternal AssessmentEnd Sem Fend Pract.OralTBMC501Biomedical Instrumentation-I2020208025251BMC502Microprocessors20202080251BMC503Analog and Digital Circuits Design202020802525-1BMC504Biomedical Digital Signal Processing2020208025-1BMC505Biomedical Digital Signal Principles of Engineering2020208025-1BMC505Business Communication Engineering2020208025-1	Course	Course Nome		Theory	Marks		Torm			
Image: BMC501Biomedical Instrumentation-IImage: Construct on the exampleImage: Construct on the exampleBMC501Biomedical Instrumentation-I202020208025-251BMC502Microprocessors2020202080251BMC503Analog and Digital Circuits Design20202020802525-1BMC503Analog and Digital Signal Processing202020208025-1BMC504Biomedical Digital Signal Processing2020208025-251BMC505Communication Engineering2020208025-1BML 506Business Communication2020208025-1	Code	Course Maine	Inter	nal Asses	ssment			Pract.	Oral	Total
BMC501Instrumentation-I202020208025-251BMC502Microprocessors2020202080251BMC503Analog and Digital Circuits Design20202020802525-1BMC504Biomedical Digital Signal Processing202020208025-251BMC505Communication Engineering202020208025-251BML506Business Communication202020208025-1			Test 1	Test 2	Avg.		work			
BMC503Analog and Digital Circuits Design20202020802525-1BMC504Biomedical Digital Signal Processing202020208025-251BMC505Principles of Communication Engineering202020208025-251BML 506Business Communication2020202080251	BMC501		20	20	20	80	25	-	25	150
BMC503Design20202020802525-1BMC504Biomedical Digital Signal Processing2020208025-251BMC505Principles of Communication Engineering202020208025-251BML 506Business Communication2020202080251	BMC502	Microprocessors	20	20	20	80	25	-	-	125
BMC504Processing202020208025-251BMC505Communication Engineering20202080251BML 506Business Communication1	BMC503		20	20	20	80	25	25	-	150
BMC505Communication Engineering20202080251BMI 506Business Communication1	BMC504	Processing	20	20	20	80	25	-	25	150
	BMC505	Communication	20	20	20	80	25	-	-	125
	BML506		-	-	-	-	50	-	-	50
TOTAL 100 400 175 25 50 7	\mathbf{N}	TOTAL			100	400	175	25	50	750

Course	Course Name	Tea	ching Schei	me	(Credits A	ssigned	
Code	Course manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC501	Biomedical Instrumentation-I (abbreviated as BMI-I	4	2	-	4	1	-	5

		Examination scheme									
Course	Course Name		Theory	v Marks							
Code	Course Maine	Interi	nal Asses	sment	End	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	exam						
BMC501	Biomedical Instrumentation-I	20	20	20	80	25	-	25	150		
	·	•									

Madala	Contents
S	6. Use modern methodologies, multi-disciplinary skill set and knowledge while working on real time projects that demand convergence of engineering, science and technology.
	 5. Provide a better technical support with exposure to the hospitals and health care industry.
	4. Demonstrate ability of correlating theoretical concepts with their practical implementation while performing laboratory exercises and project work.
	3. Exhibit competency in suggesting, designing and offering the apt, reliable and optimum solution after understanding customer's requirement completely.
	 equipment. Have in-depth knowledge about different streams in Biomedical Engineering with greater emphasis on health care equipments and the advanced technologies such as Telemedicine, Telemetry, Medical Imaging, etc.
Course Outcomes	1. Demonstrate the principles of electronics used in designing various diagnostic
Course Outcomes	health management systems. Learner will be able to
	development and improvement of health care solutions.4. To study various medical instrumentation systems, drug delivery systems and
	3. To develop core competency in the field of Biomedical Engineering to gain technical expertise in biology and medicine for effective contribution in the
	diagnostic equipments.2. To develop skills enabling Biomedical Engineers to serve Hospitals, National and International Industries and Government Agencies.
Course Objectives	1. To understand the basic principle, working and design of various automated

\mathbf{O}	 6. Use modern methodologies, multi-disciplinary skill set and knowled working on real time projects that demand convergence of engineering and technology. 	-					
Module	Contents						
1.	asic principle, technical specification, working and applications of Laboratory						
	struments.						
	1. Spectrophotometer						

	2. Colorimeter]
	3. Electrolyte Analyser		
	4. Blood cell counter		
	5. Auto-analyser		
	6. Blood gas analyser		
2.	Basic principle, technical specification, working and applications of Laboratory	10	1
	Instruments.		
	Electrophoresis and types		
	Chromatography		
	ELISA concepts (direct and indirect), reader & washer		
	Microscopes and its types: optical compound, electron microscope, fluorescence		
	microscope.		
3.	Blood Flow Measurement:	08	
	Electromagnetic, Ultrasonic, NMR and Laser Doppler flowmetry, cardiac output		
	measurement, impedance plethysmography.		
4.	Pulmonary Function Analyser and Ventilator:	12	
	Respiration measurement technique: Lung volume and capacities. Spirometry,		
	Pulmonary function measurement and analyser, Oximetry, Ventilators and		
	Anesthesia Equipment		
5.	Heart Lung machine and types of artificial oxygenator	03	
6.	Audiometers:	05	1
	Basic audiometer, Pure tone and Speech audiometer, evoked response Audiometry.		
Fort 1	hooks		-

Text books:

- 1. Handbook of Biomedical Enginerring By R.S. Khandpur (TMH Pub).
- 2. Handbook of Analytical Instruments By R.S. Khandpur (TMH Pub).
- 3. Medical Instrumentation, Application and Design By J.G. Webster.
- 4. Medical Electronics A.G. Patil , R K Jha, R Hariharan(Excel Books, New Delhi)

Reference Books:

- 1. Encyclopedia of medical devices and instrumentation J.G. Webster Vol I, II, III, IV (John Willey).
- 2. Introduction to Biomedical Equipment Technology By Carr.-Brown (Pearson Education Pub)
- 3. Introduction to Biomedical Engineering Joseph Bronzino (CRC Press)
- 4. Various Instruments Manuals
- 5. Various internet resources

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal):20 marksAttendance (Practical and Theory):05 marks

Course	Course Name	Tea	ching Schei	me	(Credits A	ssigned	
Code	Course maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC502	Microprocessors (abbreviated as MP)	4	2	-	4	1	-	5
								\sim

		Examination scheme								
Course	Course Nome		Theory Marks)		
Code	Code Course Name		nal Asses	sment	TTO HIZ		Oral	Total		
		Test 1	Test 2	Avg.	Sem w exam		2			
BMC502	Microprocessors	20	20	20	80	25	-	-	125	
		·	•							

Course Objectives	1. To develop background knowledge and core expertise in microprocessor.						
	2. To study the concepts and basic architecture of 8086 Pentium processor and						
	Co-processor 8087.						
	3. To know the importance of different peripheral devices and their interfacing to						
	8086.						
	4. To know the design aspects of basic microprocessor based system.						
	5. To write assembly language programs in microprocessor for various						
	applications.						
Course Outcomes	A Learner will be able to						
	1. Understand the architecture and software aspects of microprocessor 8086						
	2. Design assembly language program in 8086 for various applications.						
	3. Understand co-processor configurations.						
	4. Interface techniques with 8086 for various applications.						
	5. Use basic concepts of 8087 Co-processor.						

	Module	Contents	Time
	1.	Introduction to Microprocessor	04
		Introduction to Microprocessor and Microcontroller, Microcomputer based system	
		elements ,Generalized block diagram of Microprocessor, RISC & CISC CPU	
		Architectures, Harvard & Von-Neumann CPU architecture, Microprocessor	
		Programming languages, Microcomputer System software, Evolution of	
		Microprocessor	
•	2.	Architecture of Intel 8086 Microprocessor	08
		8086 Architecture and organization, Pin configuration, Pin Functions, Memory	
		segmentation concept, Minimum and Maximum modes of 8086, 8288 Bus Controller, Read and Write bus cycle of 8086, 8086 Memory organization	
	3.	Instruction set and Programming of 8086	10
		8086 Addressing modes,8086 Instruction encoding formats and instruction set,	
		Assembler directives, 8086 programming and debugging of assembly language	
		program	

Page 10

4.	Memory Interfacing with 8086:	04
	Introduction, Address Decoding, Interfacing 8086 with RAM and ROM, Comparison	
	between Memory Mapped I/O and I/O Mapped I/O	
5.	Peripherals interfacing with 8086	10
	8086Interrupt structure, Programmable interrupt controller 8259,8259 interfacing	
	with 8086, Programmable Peripheral Interface 8255, , 8086 interfacing with ADC,	
	keyboard and seven segment display using 8255, DMA controller 8237,8086	
	interfacing with 8237	
6.	8087 Math coprocessor	12
	Introduction, 8087 Architecture, Interfacing of 8086 with 8087, 8087 Instruction set,	
	Assembly language Programming based on 8086-8087 system	

List of Experiments:

- 1. 16 bit Arithmetic operations Addition, Subtraction, Multiplication, Division using 8086
- 2. Logical operations AND, OR, NOT using 8086
- 3. Searching Largest and smallest number using 8086
- 4. Sorting –the numbers in Ascending and Descending order using 8086
- 5. Code Conversion using 8086 (BCD to Hex, BCD to binary, Hex-BCD etc.)
- 6. String Manipulation using 8086
- 7. Interfacing ADC with 8086
- 8. Interfacing DAC with 8086
- 9. Parallel Communication between two microprocessor kits using Mode 1 and Mode 2 of 8255.
- 10. Interfacing 8259 using 8086
- 11. Computation of area of circle using 8087.
- 12. Computation of Hypotenuse using 8087.
- 13. Computation of Roots of Quadratic equation using 8087.

Text books:

- 1. "8086/8088 family: "Design, Programming an Interfacing", John Uffenbeck: Prentice Hall, 2nd Edition
- 2. Microcomputer systems 8086/8088 family, Architecture, Programming and Design -Yu-Cheng Liu & Glenn A Gibson, 2nd Edition-July 2003, Prentice Hall of India.
- 3. "Advanced Microprocessor and Peripherals Architecture, Programming and Interfacing", A.K.Ray & K.M Bhurchandi, Tata Mc Graw Hill , 2006.

Reference Books:

- 1. "Microprocessors and Interfacing : Programming and Hardware", Douglas V.Hall, second edition, Tata Mc Graw Hill ,2006.
- . . . "IBM PC Assembly language and programming"Peter Abel, , fifth edition
- 3. "Pentium Processor System Architecture", Don Anderson, Tom Shanley: MindShare Inc., 2nd Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks

of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal) Attendance (Practical and Theory) :20 marks :05 marks

Course Code	Course Nome	Teaching Scheme			Credits Assigned			
	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC503	Analog and Digital Circuits Design (abbreviated as ADCD)	4	2	-	4	1	-	5

				Exa	amination	scheme	ne					
Course	Course Nome		Theory	v Marks								
Code	Course Name	Internal Assessment End			Term work	Pract.	Oral	Total				
		Test 1	Test 2	Avg.	Sem exam							
BMC503	Analog and Digital Circuits Design	20	20	20	80	25	25	-	150			

Course Objectives	1. To understand and provide knowledge of various Analog And Digital Cir
	Such as Timer IC 555, PLL IC, VCO, 723 voltage regulator.
	2. To understand different types of filters and design them for the
	specifications.
	3. To understand, learn and analyze fundamentals of Electronics and Digital circ
	4. To develop analytical aptitude and to understand basic electronic concepts reto engineering profession.
	5. To develop competency in terms of logical thinking, programming
	application skills.
	6. To design and develop various circuits for biomedical applications and to dev
	logical thinking of students.
Course Outcomes	Learner will be able to
	1. Acquire the ability to design practical circuits by selecting proper IC chips ne
	for a particular application
	2. Demonstrate knowledge of important concepts from basic sciences
	mathematics thus building upon the base obtained in higher school.
	3. Demonstrate capability of designing, executing, debugging electronics cir
	thus developing an analytical aptitude.
	4. Exhibit competency in suggesting, designing and offering the apt, reliable optimum solution after understanding customer's requirement completely.
	5. Demonstrate ability of correlating theoretical concepts with their pra- implementation while performing laboratory exercises and project work.
	6. Use modern methodologies, multi-disciplinary skill set and knowledge v
	working on real time projects that demand convergence of engineering, sci and technology.

Module	Contents	Time
1.	Waveform Generation IC's:	12
	 IC 555 Functional Block diagram, Circuit diagram. 	
	• IC 555 in Astable Multivibrator(AMV) functional diagram, circuit diagram	
	with application	
	• IC 555 in Monostable Multivibrator (MMV) functional diagram, circuit	
	diagram with application	
	• PLL (IC 565 or equivalent) circuit diagram, and its applications	
	• VCO(IC 566) Circuit diagram and its applications.	
	Function Generator (IC 8038 or equivalent) Circuit diagram and its applications	
2.	Special Function IC's:	06
	• F-V convertors and V-F convertors: Circuit diagram and its applications	
	• Instrumentation Amplifier (AD 624 /AD 620) Circuit diagram and its	
	applications,	
	Monolithic Isolation Amplifier module	
	Opto-couplers and Opto-isolators	
	PWM (SG 3525 or equivalent) Circuit diagram and its applications	
3.	Active Filters:	12
	• Frequency response, design of first order (LP, HP, BP) filter and applications.	
	• Frequency response, design of 2 nd order (Chebyshev, Butterworth, Elliptical	
	filters) LP, HP, BP, All pass, Notch, band reject	
	• KRC filter.	
	Capacitor filter, switched capacitor filter.	
	Generalized Impedance Convertor (GIC)	
4.	Power Devices and Circuits:	06
	• SCR's: Basic structure, characteristics, Two transistor and Operations. series	00
	and parallel connections of SCRs.	
	 DIAC and TRIAC: Basic Structure and characteristics, applications 	
	 UJT: Operation, characteristics, parameters and UJT as a relaxation oscillator 	
	Power MOSFET : Device structure, equivalent circuit and characteristics	
5.	Voltage Controllers and Regulators :	06
51	• Analog switches, Relays : Basic Types	00
	 Functional block diagram of Voltage Regulators 	
	• Types of voltage regulators: Fixed voltage regulators (78XX and 79XX),	
	Adjustable voltage regulators, linear voltage regulator IC 723, Design of low	
	voltage regulator and high voltage regulator using 723.	
	Switching Mode Power Supply (SMPS)	
6.	Motors And Drivers :	06
U .	Stepper, Servo, DC/AC Motors drivers and geared motors (Basic operation and	00
	application)	
	Experiments:	
List of	NXDerinenis:	

- 2. Design MMV given duty cycle
- 3. Application of AMV square wave generator /

- 4. Application of MMV as a missing pulse detector / frequency divider
- 5. PLL
- 6. VCO
- 7. Function Generator IC
- 8. Design for Band pass Filter /Band reject
- 9. Design of Notch filer / Twin T filter
- 10. Design of Low Pass Filter/ High pas Filter
- 11. Instrumentation Amplifier
- 12. IC 723 Voltage regulator

Text books:

- 1. Op-Amps and linear integrated circuits R. Gayakwad
- 2. Linear Integrated Circuits: Roy Chaudhary
- 3. Design with operational amplifiers and analog integrated circuits. Sergio Franco,
- 4. Integrated Circuits K.R.Botkar.
- 5. Power Electronics, Ned Mohan.
- 6. Power Electronics, M.H.Rashid.
- 7. Power Electronics, M.D.Singh and K.B.Khanchandani,

Reference Books:

- 1.Integrated Electronics –Millman & Halkias
- 2. Opamps and linear integrated circuits, Theory and Applications- James Fiore.
- **3.** Power Electronics, P.C.Sen.
- 4. Power Electronics, Dr.P.S.Bimbhra,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Practical and Oral Examination:

Practical and oral examination will be based on experiments performed during the term and the Course - project.

Term Work:

Term work consists of minimum six experiments and a Course – project based on the syllabus. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:10 marks
Course project	:10 marks
Attendance (Practical and Theory)	:05 marks

Course	Course Course Name		ching Scher	Credits Assigned				
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC504	Biomedical Digital Signal Processing (abbreviated as BDSP)	4	2	-	4	1	-	5
							C	

			Examination scheme						
Course	Course		Theory	v Marks					
Code	Course Name	Interi	nal Asses				Oral	Total	
		Test 1	Test 2	Avg.	Sem exam				
BMC504	Biomedical Digital Signal Processing	20	20	20	80	25	-	25	150

Course Objectives	1. To build a strong base for developing algorithms for signal processing systems				
	and Imaging systems.				
	2. To develop competency in terms of logical thinking, programming and				
	application skills.				
	3. To train and motivate students for pursuing higher education and research for				
	developing cutting edge technologies.				
Course Outcomes	A learner will be able to				
	1. Understand the fundamental techniques and applications of digital signal				
	processing with emphasis on biomedical signals.				
	2. Implement algorithms based on discrete time signals.				
	3. Understand Circular and linear convolution and their implementation using DFT				
	analyse signals using discrete Fourier transform.				
	4. Understand efficient computation techniques such as DIT and DIF FFT				
	algorithms				
	5. Design FIR filters using window method, digital IIR filters by designing				
	prototype analog filters and then applying analog to digital conversion.				

Module	Contents	Time
1.	Basic Elements of DSP concepts of frequency in analog and digital signals –sampling	08
	theorems –Discrete time signals and systems- Properties –Z-transform- linear &	
	circular convolution- Correlation –DTFT	
2.	Introduction to DFT-Properties of DFT,	06
3.	Introduction DIT and DIF FFT algorithms. Use of FFT in linear filtering, Discrete	06
	Cosine transforms	
4.	Review of Design of analog Butterworth and Chebyshev Filters, Frequency	12
	transformation in analog domain, Design of IIR Digital Filters using Impulse	
	invariance method-Design of digital Filters using Bilinear transformation	
5.	Structure of FIR filters-Linear phase filters –Filter design using window technique-	10

Page 17

	Frequency sampling techniques –Finite Word length effects in digital filters. Realisation of FIR &IIR filters Direct ,cascade and parallel forms	
6.	Introduction to Digital signal Processors–Architecture –Features-addressing formats	06
	-functional mode-introduction to commercial Processors. Application of DSP in	
	Biomedical Applications	

List of Experiments:

- 1. Basics of Programming
- 2. Simulations of standard signals
- 3. Concept of Aliasing
- 4. Linear convolution circular convolution
- 5. Discrete Fourier Transform(DFT)
- 6. Design and simulation of FIR filter
- 7. IIR filters using Butterworth approximation
- 8. IIR filter using Chebyshev approximation

Text books:

- 1. Digital signal processing Principles Algorithms and Application –Proakis &Manolakis Third edition PHI
- 2. Digital Signal Processing –Sanjit K. Mithra Tata Mc-graw Hill
- 3. Digital Signal Processing S. Salivahanan, C.Gnanapriya, 2/ed Tata McGraw Hill

Reference Books:

- 1. Digital signal processing A.V. Oppenheim and R.W.Schafer- PHI
- 2. Understanding Digital Signal Processing –Richard G. Lyons-3/ed Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal):20 marksAttendance (Practical and Theory):05 marks

Course	Course Name	Tea	ching Schei	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC505	Principles of Communication Engineering (abbreviated as PCE)	4	2	-	4	1		5

Course Code	Course Name		Examination scheme									
			Theory		Pract.	Oral	Total					
		Inter	Internal Assessment					Term work				
		Test 1	Test 2	Avg.	Sem exam							
BMC505	Principles of Communication Engineering	20	20	20	80	25	-	-	125			
		•										

Course Objectives	 Provides introduction to the basic principles and techniques used in analog and digital communications. To covers a range of digital modulation techniques which are frequently used in modern communication systems.
Course Outcomes	 A Learner will be able to 1. Use the concepts of communication in various biomedical application such as telemetry system, telemedicine.

	Module	Contents	Time
	1.	Introduction to communication system :	04
		Elements of communication system, types of communication system, Noise, Signal	
		to Noise ratio, Noise factor, Noise figure, Noise Temperature	
	2.	Amplitude Modulation :	13
		Mathematical analysis of Am wave, Different types of AM Spectrum, Bandwidth,	
		waveform, DSBFC(Grid Modulated, Plate Modulated, Collector	
		Modulated),DSBSC(FET Balanced Modulator, Ring Diode modulator),SSB(Phase	
		shift method, Filter method, Third method) and Introduction of ISB and VSB, Low	
		level and high level modulator transmitter	
		AM Receiver:	
		Receiver Parameters sensitivity, selectivity, fidelity, double spotting, Image	
		frequency and its rejection, dynamic range TRF receiver, superetrodyne receiver,	
		double conversion receiver	
		AM detectors –Simple and Practical Diode detector, Principles and types of tracking,	
		Principles and types of AGC, Demodulation of DSBSC and SSB waves	
	3.	FM Modulation :	09
-		Principles of FM waveform, spectrum, Bandwidth ,FM generation –	

of AFC, Pre-emphasis and Deemphasise in FM, le detector, Balanced slope detector, Foster Seeley
detector. Balanced slope detector. Foster Seeley
lrature detector, Block diagram of FM receivers,
ference between AM and FM system
ques : 06
nals and band pass signals, Proof of
sing, PAM, PWM,PPM –
Disadvantages, comparison
ansmission Techniques : 11
igital transmission, PCMTrasmitter,
ig, DPCM,DM,ADM –
and Disadvantages
gital transmission (ASK,FSK,PSK)
Disadvantages
05
le access, FDM, TDM Transmitter and
dvantages Disadvantages, PCM-TDM

List of Experiment:

- 1. DSB-SC, DSB-FC, SSB AM generation and detection
- 2. FM generation and detection
- 3. Pre-emphasis and De-emphasis
- 4. Sampling and reconstruction
- 5. PAM generation and detection
- 6. PWM generation and detection
- 7. PPM generation and detection
- 8. PCM generation and detection
- 9. DM generation and detection
- 10. Time division multiplexing
- 11. Frequency division multiplexing

Text books:

- 1. Electronic communication system Wayne Tomasi, Pearson Education
- 2. Electronic communication system Roy Blake, Thomson Learning
- 3. Electronic communication system Kennedy and Devis,TMH

Reference Books:

- 1. Digital and Analog communication system Leon W Couch, Pearson Education
- 2. Principles of communication system Taub and Schilling ,TMH

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal) Attendance (Practical and Theory) :20 marks :05 marks

Course	Course Nome	Tea	ching Schei	Credits Assigned				
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BML506	Business Communication and Ethics (abbreviated as BCE)	-	2*+2	-	-	2	-	2

* Theory for entire class to be conducted

Course Code		Examination scheme								
	Course Name	Theory Marks								
		Internal Assessment			End Term		Pract.	Oral	Total	
		Test 1	Test 2	Avg.	exam					
BML506	Business Communication and Ethics	-	-	-	0	50	-	-	50	

Course Objectives	1. To inculcate in students professional and ethical attitude, effective communication skills, teamwork, skills, multidisciplinary approach and an ability to understand engineer's social responsibilities.
	2. To provide students with an academic environment where they will be aware of the excellence, leadership and lifelong learning needed for a successful professional career.
	3. To inculcate professional ethics and codes of professional practice
	4. To prepare students for successful careers that meets the global Industrial and Corporate requirement' provide an environment for students to work on Multidisciplinary projects as part of different teams to enhance their team building capabilities like leadership, motivation, teamwork etc.
Course Outcomes	A learner will be able to
	1. Communicate effectively in both verbal and written form and demonstrate knowledge of professional and ethical responsibilities
	2. Participate and succeed in Campus placements and competitive examinations like GATE, CET.
	3. Possess entrepreneurial approach and ability for life-long learning.
	4. Have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues.
	1

	on Society and demonstrate awareness of contemporary issues	5.
	â	
Module	Contents	Time
1.	Report Writing	07
	Objectives of report writing	
	Language and Style in a report	
	Types of reports	

	Formats of reports: Memo, letter, project and survey based	
2.	Technical Proposals	02
	Objective of technical proposals	
	Parts of proposal	
3.	Introduction to Interpersonal Skills	07
	Emotional Intelligence	
	Leadership	
	Team Buliding	
	Assertiveness	
	Conflict Resolution	
	Negotiation Skills	
	Motivation	
	Time Management	
4.	Meetings and Documentation	02
	Strategies for conducting effective meetings	
	Notice	
	Agenda	
	Minutes of the meeting	
5.	Introduction to Corporate Ethics and etiquettes	02
	Business Meeting etiquettes, Interview etiquettes, Professional and work etiquettes, Social skills	
	Greetings and Art of Conversation	
	Dressing and Grooming	
	Dinning etiquette	
	Ethical codes of conduct in business and corporate activities (Personal ethics,	
	conflicting values, choosing a moral response, the process of making ethical	
	decisions)	
6.	Employment Skills	06
	Cover letter	
	Resume	
	Group Discussion	
	Presentation Skills	
	Interview Skills	
	Total	26

References

- 1. Fred Luthans, "Organizational Behavior", Mc Graw Hill, edition
- 2. Lesiker and Petit, "Report Writing for Business", Mc Graw Hill, edition
- 3. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw Hill
- 4. Wallace and Masters, "*Personal Development for Life and Work*", Thomson Learning, 12th edition
- 5. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 6. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing",

- 7. B N Ghosh, "*Managing Soft Skills for Personality Development*", Tata McGraw Hill. Lehman,
- 8. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 9. Bell . Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 10. Dr. K. Alex ,"Soft Skills", S Chand and Company
- 11. Dr.KAlex,"SoftSkills",S Chand and Company
- 12. R.Subramaniam, "Professional Ethics" Oxford University Press 2013.

List of Assignments

- 1. Report Writing (Synopsis or the first draft of the Report)
- 2. Technical Proposal (Group activity, document of the proposal)
- 3. Interpersonal Skills (Group activity and Role play)
- 4. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 5. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 6. Corporate ethics and etiquettes (Case study, Role play)
- 7. Cover Letter and Resume
- 8. Printout of the PowerPoint presentation

Term Work

Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:

- Assignments :
- Project Report Presentation: 15 marks
- Group Discussion: 10 marks
- Attendance :
- 05 marks

20 marks

The final certification and acceptance of term work ensures the satisfactory performance of work assigned and minimum passing in the term work.

Page 24

Course	Course Name	Teaching Scheme Credits Assigned						ned		
Code	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC601	Biomedical Instrumentation –II	4	2	-	4	1		5		
BMC602	Biostatistics	4	-	1	4	-	1	5		
BMC603	Biological Modeling and Simulation	3	2	-	3	1		4		
BMC604	Microcontrollers and Embedded Systems	4	2	-	4	1 ♦	-	5		
BMC605	Medical Imaging –I	3	2	-	3	1	-	4		
BMC606	Digital Image Processing	4	2	-	4	1	-	5		
	TOTAL	22	10	1	22	5	1	28		

Syllabus Scheme for T.E. Semester VI Biomedical Engineering

				Ex	aminati	on schen	ne	ne			
Course	Comment Norma		Theory I	Marks							
Code	Course Name	Intern	al Assess	ment	End	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	Sem exam	WUIK					
BMC601	Biomedical Instrumentation –II	20	20	20	80	25	25	-	150		
BMC602	Biostatistics	20	20	20	80	25	-	-	125		
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125		
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150		
BMC605	Medical Imaging –I	20	20	20	80	25	-	25	150		
BMC606	Digital Image Processing	20	20	20	80	25	25	-	175		
	TOTAL			120	480	150	50	50	850		

2

Course Code	Course Name	Teaching Scheme Cu				Credits A	ssigned			
	Course Manie	Theory	Pract.	Tut	Theory	Pract.	Tut	Total		
BMC601	Biomedical Instrumentation-II (abbreviated as BMI-II)	4	2	-	4	1		5		
							C			

					Exa	amination	scheme	(
Course		N DT	Theory Marks							
Code	C	Course Name	Inter	Internal Assessment End			Term work	Pract.	Oral	Total
			Test 1	Test 2	Avg.	Sem exam				
BMC601		Biomedical Instrumentation-II		20	20	80	25	25	-	150
Course Obj	ectives	ctives 1. To understand		ic princi	ple, worl	king and	design	of vario	us auto	omated
Course Ou		 diagnostic equi 2. To develop ski International In 3. To develop contechnical expendevelopment and 4. To study varione health manager Learner will be at 1. Demonstrate the equipment. 2. Have in-depth 	pments. Ils enabli dustries a ore comp rtise in nd improvous medi ment systemed ole to ne princip knowleds	ng Biom and Gove betency in biology vement of cal instru- ems. ples of e ge about of	edical En ernment A n the fie and med f health c umentatic electronic different	igineers to agencies. Id of Bio icine for are solution system s used in streams in	o serve F omedical effectiv ons. as, drug designi n Biome	Hospitals I Engine ve contri delivery ang vario dical Eng	, Natior eering t bution y system ous diag gineerin	nal and o gain in the ns and gnostic ng with
 greater empl Telemedicin 3. Exhibit com optimum sol 4. Demonstrate implementat 5. Provide a be industry. 6. Use modern working on and technology 			Telemetry tency in on after u ability of while per er technic nethodolo al time p	y, Medica suggestin inderstan f correla erforming cal suppo	al Imagin ng, desig ding cust tting the g laborato rt with ex ulti-discip	g, etc. ning and omer's re oretical or ry exercis xposure to plinary sl	offering quirement concepts ses and p to the ho kill set	g the apt nt compl with t project w spitals a and kno	t, reliab etely. heir pr ork. nd healt wledge	le and cactical th care while

Module	Contents	Time
1.	Generation of Bioelectric Potentials:	05
	Basic cell physiology, Nerve, Muscle, Pacemaker and Cardiac muscle	

2.	Biophysical signal capture, processing and recording systems (with technical	13				
	specifications):					
	Typical medical recording system and general design consideration. Sources of noise					
	in low level recording circuits and their removal techniques. ECG, EMG, EEG,					
	Electrode placement and Measuring techniques for EOG, ERG and					
	Phonocardiography. Measurement of skin resistance.					
	Biofeedback Technique: EEG, EMG					
3.	Patient Monitoring System:	10				
	Measurement of Heart Rate, Pulse rate, Blood pressure, Temperature and Respiration					
	rate, Apnea Detector.					
	Electrical Safety in Biophysical Measurements.					
	Heart rate variability measurement and applications.					
4.	Arrhythmia and Ambulatory Monitoring Instruments:	08				
	Cardiac Arrhythmias, waveforms and interpretation from them.					
	Stress test measurement.					
	Ambulatory monitoring instruments-Holter monitor					
	Point of care devices and their design considerations for homecare devices:					
	glucometer (kidney function), disposable lung function test.					
5.	Foetal and Neonatal Monitoring System:	06				
	Cardiotocograph, Methods of monitoring of Foetal Heart rate, Incubator and Infant					
	warmer. Non stress test monitoring.					
6.	Biotelemetry, Telemedicine concepts and its application	06				

Text books:

- 1. Handbook of Biomedical Engineering by R.S. Khandpur, PHI
- 2. Medical Instrumentation, Application and Design by J.G. Webster, TMH.
- 3. Introduction to Biomedical Equipment Technology by Carr.-Brown (Pearson

Education Pub)

4. Introduction to Biomedical Engineering by J Bronzino

Reference Books:

- 1. Encyclopaedia of medical devices and instrumentation J.G. Webster Vol I, II, III, IV (John Willey).
- 2. Principles of applied Biomedical Instrumentation by Geddes and Becker, Wiley interscience publication.
- 3. Principles of Biomedical Instrumentation and Measurement by Richard Aston
- 4. Various Instruments Manuals.
- 5. Various internet resources.

Internal Assessment (IA):

0

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal) Attendance (Practical and Theory) :20 marks :05 marks

Course Code	Course Name	Tea	ching Scher	Credits Assigned				
	Course Maine	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC602	Biostatistics (abbreviated as BST)	4	-	1	4	-	1	5

Course			Examination scheme								
	Course Name Theory Marks										
Code	Course Maine	Inter	nal Asses	sment	End Sem	Term work	Pract.	Oral	Total		
		Test 1	Test 2	Avg.	exam	C	•				
BMC602	Biostatistics	20	20	20	80	25	_	-	125		
		•	•								

Course Objectives	1. To cover basic concepts and theory related to statistics.					
	2. To focus on various statistical abilities such as analysis of variance, hypothesis					
	testing, estimation, etc.					
Course Outcomes	A learners will be able to					
	1. Apply statistical methods to sample data and analyse it.					
	2. Develop a strong foundation for designing algorithms for computation.					

Module	Contents	Time
1.	Descriptive statistics and probability	04
	Frequency distribution, Measures of central tendency, Measures of dispersion	
	Basic probability and Bayes theorem.	
2.	Probability and Sampling Distributions	10
	Discrete probability distributions	
	Continuous probability distributions - Binomial, poisson and normal distributions	
	Sampling distributions – sample mean, difference between two sample means,	
	sample proportions, difference between two sample proportions	
3.	Estimation	07
	t- distribution	
	Confidence intervals for - population mean, difference between two population	
	means, population proportion, difference between two population proportions,	
	variance of normally distributed population, ratio of variances of two normally	
	distributed populations	
	Determination of sample size for estimating mean and proportions	
4.	Hypothesis testing	07
	Hypothesis testing for – Population mean, difference between two population means,	
	population proportions, difference between two population proportions, population	
	variance, ratio of two population variances	
	Type – I and II error and power of test	
5.	Analysis of variance	13
	Completely randomized design, Randomized complete block design, repeated	

	measures design, factorial experiment. Regression and Correlation Simple linear regression, correlation model, correlation coefficient, multiple regression, multiple correlation	
6.	Chi square distribution and analysis of frequency Chi-square distribution – properties	07
	Test of goodness of fit, independence and homogeneity	

List of Tutorials:

- 1. Descriptive statistics and probability
- 2. Discrete probability distributions
- 3. Continuous probability distributions
- 4. Sampling distributions
- 5. Estimation
- 6. Hypothesis testing
- 7. Analysis of variance
- 8. Regression and Correlation
- 9. Chi square distribution and analysis of frequency

Text books:

- 1. Biostatistics A foundation for analysis in health sciences by Wayne W. Daniel, Seventh edition, Wiley India
- 2. Fundamentals of mathematical statistics by S. C. Gupta and V. K. Kapoor, second edition, Sultan Chand Publisher
- 3. Probability and statistics for engineers by J. Ravichandran, Wiley /india
- 4. Biostatistics How it works by Steve selvin, Pearson education
- 5. An Introduction to Biostatistics by Sunder Rao and J. Richard, Third Edition, Prentice Hall of India
- 6. Probability and Statistics by Schaum's series

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

At least 08 tutorials covering entire syllabus must be given during the 'class wise tutorial'. The tutorials should be learners' centric and meaningful, interesting and innovative.

The distribution of the term work shall be as follows, Tutorials

:20 marks

Attendance (Tutorial and Theory):05 marksThe final certification and acceptance of term-work ensures the satisfactory performance in
tutorial. Term work assessment must be based on the overall performance of the learner.

Course Code	Course Nome	Teaching Scheme Credits Assigne					ssigned	gned	
	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total	
BMC603	Biological Modeling and Simulation (abbreviated as BMS)	3	2	-	3	1		4	

		Examination scheme								
Course	Course Name	Theory Marks								
Code		Internal Assessment			End	Term work	Pract.	Oral	Total	
		Test 1	Test 2	Avg.	Sem exam					
BMC603	Biological Modeling and Simulation	20	20	20	80	25	-	-	125	

Course Objectives	1. To understand basic concepts of modeling for designing biological model.							
	2. To simulate physiological processes for better understanding.							
	To develop competency in terms of logical thinking, programming and							
	application skills							
	4. To train and motivate students for pursuing higher education and research for							
	developing cutting edge technologies.							
Course Outcomes	A learner will be able to							
	1. Design hardware and develop software for various biomedical systems.							
	2. To use various simulation software for modeling biological systems.							

Module	Contents	Time						
1.	Physiological Modeling: Steps in Modeling, Purpose of Modeling, lumped	04						
parameter models, distributed parameter models, compartmental modeling, modeling								
	of circulatory system, regulation of cardiac output and respiratory system.							
2.	Model of Neurons: Biophysics tools, Nernst Equation, Donnan Equilibrium, Active	11						
	Transport (Pump) GHK equation, Action Potential, Voltage Clamp, Channel							
	Characteristics, Hodgkin- Huxley Conductance Equations, Simulation of action							
	potential, Electrical Equivalent model of a biological membrane, impulse							
	propagation- core conductor model, cable equations.							
3.	Neuromuscular System: modeling of skeletal muscle, mono and polysynaptic	06						
	reflexes, stretch reflex, reciprocal innervations, two control mechanism, Golgi							
	tendon, experimental validation, Parkinson's syndrome.							
4.	Eye Movement Model: Four eye movements, quantitative eye movement models,	06						
	validity criteria.							
5.	Thermo regulatory systems: Thermoregulatory mechanisms, model of	03						
	thermoregulatory system, controller model, validation and application.							

Page 32

6.	Modelling of other physiological systems.	06
	Modelling the Immune response: Behavior of the immune system, linearized model	
	of the immune response.	
	Modelling of Drug delivery systems.	
	Modelling of Insulin Glucose feedback system and Pulsatile Insulin secretion	

List of Experiments/Assignments:

Experiments can be carried out using any of these softwares.

- 1. Simulations using MATLAB
- 2. Simulations using HHSim
- 3. Simulations using Neurons in Action
- 4. Developing a model of neuron using NEURON

Text books:

- 1. Bioengineering, Biomedical, Medical and Clinical Engg.: A.Teri Bahil.
- 2. Signals and systems in Biomedical Engg.: Suresh R Devasahayam.
- 3. Bio-Electricity A quantitative approach by Barr and Ploncey

Reference Books:

1. Biomedical Engineering Handbook by Bronzino (CRC Press)

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum six experiments and two assignments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:20 marks
Attendance (Practical and Theory)	:05 marks

Course	Course Nome	Teaching Scheme			Credits Assigned			
Code	Course Name	Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC604	Microcontrollers and Embedded Systems (abbreviated as MES)	4	2	-	4	1		5

			Examination scheme								
Course			Theory Marks								
Code	Course Name	Inter	Internal Assessment			End Som Work		Oral	Total		
		Test 1	Test 2	Avg.	Sem exam						
BMC604	Microcontrollers and Embedded Systems	20	20	20	80	25	-	25	150		
		•									

Course Objectives	1. To learn the basics of Microcontroller designing and interfacing.				
	To understand and improve programming concepts.				
Course Outcomes	A learner will be able to				
	1. Develop understanding of hardware design and will be able to design controller based real time applications.				
	2. Develop programming skills for designing and developing automated and user friendly systems.				

Mod	dule	Contents	Time
1.		Embedded Systems	04
		Definition of embedded systems, overview of embedded systems and its	
		classification, design challenges, processor technology, IC technology, design	
		technology and tradeoffs, examples of embedded systems	
2	2.	MCS-51 Microcontroller	10
		8051 architecture ; its variants and comparision, comparision of microprocessor and	
		microcontrollers, CPU timing and machine cycle, memory organisation, SFR's,	
		integrated prepherials such as timers/counters, serial ports, parallel I/O ports,	
		interrupt structure, memory interfacing power saving and power down modes.	
3.	3.	8051programming	12
		Assembly language programming process, programming tools, Instruction set in	
		detail and addressing modes, Programming practice using assembly and C compilers	
4	ŀ.	Microcontroller design and interfacing case studies	12
		Interfacing with external memories, Interfacing with 8255, Interfacing with 7	
		segment display, Interfacing with keyboard, interfacing with LCD, Interfacing with	
		ADC, DAC and Sensors, Interfacing with stepper motor	
		Interfacing with PC using RS232	
5.	5.	Serial Communication Protocols	05
·		Operation of serial port, programming for asynchronous serial communication, Serial	
		Communication using the 'I2C', SPI, Introduction to USB & CAN bus.	
Un	niversi	ity of Mumbai Biomedical Engineering, (R- 2012) (From A.Y. 2014-15) Page 3	34

6.	Real time operating system	05
	Introduction to RTOS concept, RTOS scheduling models interrupt latency and	
	response times of the tasks as performance metric. Example of any small RTOS	
	system	

Text books:

- 1.The 8051 microcontrollers-Kenneth J Ayala
- 2.Embedded systems-architecture, programming and design, Rajkamal, Tata McGraw Hill

3.Embedded System Design: A unified Hardware/Software Introduction Frank Vahid, Toney Givargis- John Wiley publication

- 3.An Embedded Software Primer David E. Simon Pearson Education
- 4. The 8051 Microcontroller and Embedded Systems Muhammad A Mazidi, , Pearson Education
- 5. Using MCS-51 Microcontroller Han-Way Huang,.
- 6. 8051 microcontroller hardware, software applications.V U dayashankara, M S Mallikarjunaswamy,

Reference Books:

1. Sriram Iyer and Pankaj Gupta, Embedded Realtime systems programming, Tata McGraw Hill

2. Embedded Microcomputer Systems- Real time Interfacing -Valvano

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus.

Remaining question (Q.2 to Q.6) will be selected from all the modules.

Oral Examination:

Oral examination will be based entire syllabus and on the Course -project.

Term Work:

Term work consists of minimum five experiments and a Course - project based on the syllabus. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal)	:10 marks
Course project	:10 marks
Attendance (Practical and Theory)	:05 marks

Course	Course Name	Теа	ching Schei	Credits Assigned				
Code		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC605	Medical Imaging-I (abbreviated as MI-I)	3	2	-	3	1	-	4

Course Code	Course Name	Examination scheme							
		Theory Marks)	
		Internal Assessment			End	work	Pract.	Oral	Total
		Test 1	Test 2	Avg.	Sem exam	Sem	2		
BMC605	Medical Imaging-I	20	20	20	80	25	-	25	150

Course Objectives	1. To familiarize the learners with the various Imaging techniques in medicine					
Course Objectives						
	operating principles and quality control aspects of various imaging modalities.					
	2. To keep the learners abreast with the technological developments in the field of					
	Medical Imaging					
Course Outcomes	A Learner will able to					
	1. Understand essential physics, concepts of Medical Imaging and how they are					
	employed in diagnosis and therapy.					
	2. Get familiar with the current techniques of medical Imaging along with their					
clinical applications.						
	3. To apprehend the importance of radiation constructive utilization and safety.					

Module	Contents	Time
1.	Ultrasound in Medicine:	10
	Introduction, Production and Characteristics of Ultrasound	
	Display System : A mode ,B mode and M mode display and applications.	
	Ultrasound transducers and Instrumentation.	
	Real time Ultrasound, Continuous wave and Pulsed wave Doppler	
	Ultrasound systems, color flow imaging, applications.	
2.	X- ray Imaging:	12
	Properties of X rays, production of X rays, X ray interaction with matter.	
	Total radiographic System : X – ray tubes, Rating of X ray tubes.	
	X –ray generators, X ray Image and beam Limiting Deices, Controls, X ray Film	
	Development Technique.	
3.	Flouroscopic Imaging and x ray Image Intensifier Digital subtraction	05
	Angiography	
4.	Computed Radiography and Digital Radiography, Mammography	04
5.	Medical Thermography: Physics of thermgraphy, Thermographic equipment,	03
	applications.	

Page 36

6. **Endoscopy : Equipment , Imaging and its applications**

Text books:

- 1. Christensen's Physics of Diagnostic Radiology
- 2. Medical Imaging Physics William .R.Hendee

Reference Books:

- 1. Biomedical Technology and Devices by James Moore .
- 2. Biomedical Engineering Handbook by Bronzino
- 3. Physics of Diagnostic images -Dowsett

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The Learners need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal):20 marksAttendance (Practical and Theory):05 marks

The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and completion of journal. Term work assessment must be based on the overall performance of the learner.

02

Course Code	Course Name	Теа	ching Schei	Credits Assigned				
		Theory	Pract.	Tut	Theory	Pract.	Tut	Total
BMC606	Digital Image Processing (abbreviated as DIP)	4	2	-	4	1	-	5
								\sim

Course Code	Course Name	Examination scheme							
		Theory Marks)	
		Internal Assessment			End	TROPIZ	Pract. Ora	Oral	Total
		Test 1	Test 2	Avg.	Sem exam		D		
BMC606	Digital Image Processing	20	20	20	80	25	25	-	150

Course Objectives	1. To introduce the learners the basic theory of digital image processing.
	2. To expose learners to various available techniques and possibilities of this field.
	3. To understand the basic image enhancement, transforms, segmentation,
	compression, morphology, representation, description techniques & algorithms.
	4. To prepare learners to formulate solutions to general image processing problems.
	5. To develop hands-on experience in using computers to process images.
	6. To familiarize with MATLAB / C/ Labview/ similar software for processing
	digital images.
Course Outcomes	A learners will be able to
	1. Acquire the fundamental concepts of a digital image processing system such as
	image acquisition, enhancement, segmentation, transforms, compression,
	morphology, representation and description.
	2. Analyze images in the spatial domain.
	3. Analyze images in the frequency domain through the Fourier transform.
	4. Design and implement with MATLAB/C/Labview algorithms for digital image
	processing operations such as point processing, histogram processing, spatial and
	frequency domain filtering, denoising, transforms, compression, and
	morphological processing.

	Module	Contents	Time
•	1.	Basics of Image Processing: Image acquisition, Processing, Communication,	05
		Display; Electromagnetic spectrum; Elements of visual perception - Structure of the	
		human eye, Image formation in the eye, Brightness adaptation and discrimination,	
		Image formation model, Uniform and non-uniform sampling, Quantization, Image	
		formats.	
	2.	Image Enhancement: Spatial domain - Point processing techniques, Histogram	12
		processing, Neighbourhood processing, Frequency domain techniques - 2D-DFT,	
		Properties of 2D-DFT, Low pass, High pass, Noise removal, Homomorphic filters,	

	Basics of colour image processing.	
3.	Image Segmentation: Basic relationships between pixels - Neighbours, Adjacency,	08
	Connectivity, Regions, Boundaries, Distance measures; Detection of discontinuities,	
	Point, Line, Edge detection, Edge linking, Hough transform, Thresholding-based	
	segmentation, Region-based segmentation.	
4.	Image Transforms: DFT, FFT, DCT, DST, Hadamard, Walsh, Haar, Slant, K-L	08
	Transforms, Basis functions and basis images, Introduction to wavelet transform.	
5.	Image Compression: Fundamentals of image compression models, Lossless	08
	compression - RLE, Huffman, LZW, Arithmetic coding techniques. Lossy	
	compression - IGS coding, Predictive coding, Transform coding, JPEG, JPEG 2000.	
6.	Morphology, Representation and Description: Dilation, Erosion, Open, Close, Hit-	07
	or-miss, Boundary extraction, Region filling, Thinning and thickening;	
	Chain Codes, Polygonal approximations, Signatures;	
	Fourier descriptors, Moments.	

List of Experiments (using Matlab / C/ Labview/ similar software)

- 1. Point Processing techniques (At least 4 experiments).
- 2. Spatial domain Filtering.
- 3. Histogram Processing (Histogram Stretching and Equalisation).
- 4. Frequency Domain Filtering (Plotting 2D-DFT, Low pass and High Pass- Ideal, Butterworth and Gaussian Filters).
- 5. Segmentation-Gradient operators.
- 6. Transforms-DCT.
- 7. Morphology-Dilation Erosion.

Text books:

- 1. Digital Image Processing, Gonzalez and Woods- Pearson Education.
- 2. Fundamentals of Digital Image Processing, A.K. Jain P.H.I.
- 3. Digital Image Processing and Analysis, Chanda Majumder-Printice Hall India.

Reference Books:

- 1. Digital Image Processing and Computer Vision, Sonka, Hlavac, Boyle-Cengage learning.
- 2. Digital Image Processing, William Pratt- John Wiley.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Term Work:

Term work consists of minimum eight experiments. The distribution of the term work shall be as follows:

Laboratory work (Experiments and Journal) Attendance (Practical and Theory) :20 marks :05 marks