(3 hrs) Total Marks: 100

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- (3) Draw neat diagrams wherever necessary.
- (5) Symbols have usual meaning unless otherwise stated.
- (5) Use of non-programmable calculator is allowed.

Constants: $h = 6.626 \times 10^{-34} \text{ Js}, k = 1.38 \times 10^{-23} \text{ JK}^{-1}$

- 1. Attempt any two:---
 - (a) State and explain probability theorems. Using this theorem, find the chance of throwing a 6 at least once in two throws of a single die.
 - (b) Explain the terms 10
 - i) Binomial probability functions
 - :: Cl. 1 1 1 :
 - ii) Chebyshev's inequality
 - iii) Laws of large number
 - (c) Explain the Poisson distribution and derive the required relations. 10
- 2 Attempt any two:---
 - (a) State the second order non-homogeneous linear ordinary differential equation with constant variable and solve the same.
 - (b) What do you mean by partial differential equation? Hence Solve the equation

$$\frac{\partial^2 z(x,y)}{\partial x \partial y} = x^2 y$$

For
$$z(x, 0) = x^2$$
 and $z(1,y) = \cos(y)$

- (c) What do you mean by Hyperbolic function in complex number.

 10
 Prove the following formulas.
 - i) $\cosh^2(z) \sinh^2(z) = 1$
 - ii) $\frac{d}{dz} \cosh(z) = \sinh(z)$
- 3. Attempt any two:---
 - (a) Derive an expression of root mean square deviation in occupation number of dominate configuration.
 - (b) State Boltzmann formula of entropy and derive its relation with Canonical partition function 10
 - (c) Define partition function. Derive expression for translation partition function. Find translation partition function for Ar confine to a volume of 1L at 298k. (Given $m_{Ar} = 6.63 \times 10^{-26} \text{ kg}$)

4.		Attem	pt any two:	N. O.
	(a)	Consider a large box having area A is divided into k cells of area $a_1, a_2, a_3,, a_k$. N identical balls are thrown in the box in a completely random manner. Hence find the condition for the most probable distribution of N balls.		
	(b)	What are Fermions? Derive Fermi-Dirac distribution law.		10
	(c)	Derive Rayleigh-Jean's formula for the black body radiation.		10
5.		Attempt any Four:		
		(i)	A club consists of 50 members. In how many ways can a president, vice-president, secretary and treasurer be chosen? In how many ways can a committee of 4 members be chosen?	05
		(ii)	Three coins tossed, the number of random variables x (say head) are 0, 1, 2 & 3. Calculate the followings a) Mean value of x . b) Variance of x . c) Standard deviation of x .	05
		(iii)	Find the value of $\sin\left(\frac{\pi}{2} + i \ln 3\right)$	05
		(iv)	Solve $y'' - 2y' - 3y = e^{\frac{x^2}{2x}}$	05
		(v)	Write notes on Equipartition theorem	05
		(vi)	What is the difference in energy between the $n = 2$ and $n = 1$ states for molecular oxygen constrained by a one-dimensional box having a length of 1.00 cm? (Given mass of $O_2 = 5.31 \times 10^{-25}$ kg.)	05
		(vii)	If the r.m.s. velocity of the molecules of hydrogen at N.T.P. is 1.84 km/s, calculate the r.m.s. velocity of oxygen molecules at N.T.P. Molecular weight of hydrogen and oxygen are 2 and 32 respectively.	05
		(viii)	Three identical particles can be in any of the five states. What are the number of possible ways of distributing them in various states according to (a) M-B. Statistics. (b) B.E. Statistics. (c) F.D. Statistics.	05

Page **2** of **2**