N.B. (1) Question No. 1 is compulsory
(2) Attempt any Three Question from Q. No. 2 to Q. No. 6
(3) Make suitable assumption if required
(4) Illustrate answers with sketches wherever required
Q. 1 Solve any four questions from the following (Five marks each)
a) Derive an expression for one dimensional steady state heat conduction through plane wall.
b) Discuss the concept and application of steady and unsteady state heat transfer along with the practical example of each.
c) Calculate the following for an industrial furnace in the form of a black body and emitting radiation at $2500^{\circ} \mathrm{C}$.
i) Monochromatic emissive power at $1.2 \mu \mathrm{~m}$
ii) Wave length at which the emission is maximum
iii) Total emissive power of the furnace if it is assumed as real surface with emissivity equal to 0.8
d) Discuss in detail about the effect of engine variables on detonation in Spark ignition engines.
e) A cylinder rod of 1 cm diameter and 1 m long is initially maintained at $300^{\circ} \mathrm{C}$. It is suddenly dropped in oil at $50^{\circ} \mathrm{C}$ having convective heat transfer coefficient at 240 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$. Find the time required to cool the rod up to $120^{\circ} \mathrm{C}$. Properties of rod material is as follows:
Density $=8000 \mathrm{~kg} / \mathrm{m}^{3} . \mathrm{C}=400 \mathrm{~J} / \mathrm{kg} / \mathrm{K} . \mathrm{k}=60 \mathrm{~W} / \mathrm{mK}$
f) Engine oil at $60^{\circ} \mathrm{C}$ flows over the upper surface of a 5 m -long flat plate whose temperature is $20^{\circ} \mathrm{C}$ with a velocity of $2 \mathrm{~m} / \mathrm{s}$. Determine the total drag force and the rate of heat transfer per unit width of the entire plate.
Properties of oil are as follows:
Density $=876 \mathrm{~kg} / \mathrm{m}^{3}, \operatorname{Pr}=2870$, Thermal conductivity $=0.144 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$, Kinematic viscosity $=242 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
Q. 2 (a) An aluminum rod 2 cm diameter and 10 cm long protrudes from the wall maintained at
$300^{\circ} \mathrm{C}$. The rod is exposed to surroundings at $15^{\circ} \mathrm{C}$. Heat transfer coefficient between rod surfaces an environment is $20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The thermal conductivity of the material is 200 W/mK. Find
i) Total heat dissipated by rod
ii) Temperature of road at 4 cm from the wall
iii) Temperature at the end of rod
iv) Fin efficiency

Assume that the rod end is insulated
(b) What are the different control methods for engine emissions
Q. 3 (a) The following details were noted in a test on a four-cylinder, four-stroke engine, diameter 10 $=100 \mathrm{~mm}$; stroke $=120 \mathrm{~mm}$; speed of the engine $=1600 \mathrm{rpm}$; fuel consumption $=0.2$ $\mathrm{kg} / \mathrm{min}$; calorific value of fuel is $44000 \mathrm{~kJ} / \mathrm{kg}$; difference in tension on either side of the brake pulley $=40 \mathrm{~kg}$; brake circumference is 300 cm . If the mechanical efficiency is 80%, calculate
(i) brake thermal efficiency (ii) indicated thermal efficiency (iii) indicated mean effective pressure and (iv) brake specific fuel consumption
(b) Derive an expression for temperature distribution and heat dissipation in a straight fin of rectangular profile for insulated tip.
Q. 4 (a) A furnace walls made up of three layers, one of fire brick, one of insulating brick and one of red brick. The inner and outer surfaces are at $870^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. The respective co- efficient of thermal conductivities of the layer are $1.0,0.12$ and 0.75 W / mK and thicknesses are $22 \mathrm{~cm}, 7.5 \mathrm{~cm}$, and 11 cm . Assuming close bonding of the layer at their interfaces, find the rate of heat loss per sq. meter per hour and the interface temperatures if the convective heat transfer coefficient of the atmosphere 40 $\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and atmospheric temperature is $20^{\circ} \mathrm{C}$.
(b) Discuss about the actual and ideal valve timing diagram for four stroke petrol engine.
Q. 5 (a) A four stroke gas engine has a cylinder diameter of 25 cm and stroke 45 cm . The effective
diameter of the brake is 1.6 m . The observations made in the test of the engine were as follows.
Duration of the test 40 minute, total number of revolutions $=8080$. Total no of explosions $=3230$, net load on the brake $=90 \mathrm{~kg}$, mean effective pressure $=5.8$ bar, volume of gas used $=7.5 \mathrm{~m}^{3}$, pressure of gas indicated in a meter $=136 \mathrm{~mm}$ of water of gauge, atmospheric temperature $=17^{\circ} \mathrm{C}$, calorific value of the gas $19 \mathrm{MJ} / \mathrm{m}^{3}$ at NTP. Rise in temperature of the jacket cooling water $=45^{\circ} \mathrm{C}$, Cooling Water Supplied 180 Kg . Draw up the heat balance sheet and estimate the indicated thermal efficiency and brake thermal efficiency. Assume atmospheric pressure as 760 mm of Hg
(b) State and explain different factors affecting on ignition delay period in compression ignition engine
Q. 6 (a) Water mass flow rate of $1.4 \mathrm{~kg} / \mathrm{s}, \mathrm{Cp}=4.187 \mathrm{~kJ} / \mathrm{kgK}$) is heated from $40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ by08 an oil (mass flow rate $2 \mathrm{~kg} / \mathrm{s}, \mathrm{Cp} 1.9 \mathrm{~kJ} / \mathrm{kgK}$) entering at $110^{\circ} \mathrm{C}$ in a counter flow heat exchanger. If overall heat transfer coefficient is $350 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, Calculate the surface area required. Also find the surface area required if it's a parallel flow heat exchanger.
(b) Explain the following (Four marks each)
i) What is the governing law of diffusion mass transfer?
ii) Draw a boiling curve for water and show and explain the different boiling regimes. Explain the phenomenon of condensation.
iii) Derive an expression for \log mean temperature difference in parallel flow heat exchanger. State your assumption

