		Duration: 3hrs [Max Marks:80]	
N.E	3. :	(1) Question No 1 is Compulsory.	
		(2) Attempt any three questions out of the remaining five.	
		(3) All questions carry equal marks.	
		(4) Assume suitable data, if required and state it clearly.	
		By Dir Chr By	
1		Attempt any FOUR	[20]
	a	Compute the DFT of the four point sequence $x(n)=\{0,1,2,3\}$	
	b	Explain Quantization and effects of truncation and rounding.	N. C.
	c	Compare IIR and FIR filters.	<i>y</i>
	d	Explain the concept of pipelining in DSP processor.	
	e	Convert an analog filter with system function H(s) into digital IIR filter using	
		Impulse Invariance method. $H(s) = 10 / (S^2 + 7S + 10)$	
2	a	Obtain the DFT of the sequence $x(n) = \{1,1,1,1,1,1,1,0\}$ using DIT FFT algorithm.	[10]
	b	Obtain the linear convolution of the following sequences using overlap add	[10]
	F	method. $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2, 3\}$	V.
3	a	Draw architectural block diagram of DSP processor and explain functions of each block.	[10]
	b	Design a Butterworth digital IIR low pass filter using BLT by assuming T=1	[10]
		sec., to satisfy the following specifications	
		$0.707 \le H(e^{jw}) \le 1.0; \qquad 0 \le w \le 0.2\pi$	
		$ H (e^{jw}) \le 0.08; \qquad 0.4\pi \le w \le \pi$	
4	a	Design a FIR filter with hamming window for the following specifications:	[10]
		$H_{\rm d} (w) = e^{-j3w}$ $-\pi/4 \le w \le \pi/4$	
		$=0 \qquad \pi/4 \leq w \leq \pi$	
	b	Design Chebyshev analog filter with maximum pass band attenuation of 2.5dB at	[10]
		$\Omega_P = 20 \text{ rad/sec}$ and stop band attenuation of 30 dB at $\Omega_S = 50 \text{ rad/sec}$.	
5	a	Write a note on polyphase filters.	[10]
	b	Determine impulse response h(n) of a filter having desired frequency response	[10]
		$H_d(e^{-j3w}) = e^{-j(M-1)(w/2)}$ for $0 \le w \le \pi/2$	
		$= 0 \qquad \text{for } \pi/2 \le w \le \pi$	
		M=7, use frequency sampling approach.	
6	a	Write short note on: Application of DSP in speech processing.	[10]
	b	Write short note on Gibbs phenomenon.	[10]
	4		
X.			
		N/ N	

13033