Time: 3 hours Max. Marks: 80

N.B. (1) Question No. 1 is compulsory

- (2) Assume suitable data if necessary
- (3) Attempt any three questions from the remaining questions

Q.1 Solve any Four out of Five

5 marks each

- a Explain the challenges of Natural Language processing.
- **b** Explain how N-gram model is used in spelling correction
- **c** Explain three types of referents that complicate the reference resolution problem.
- **d** Explain Machine Translation Approaches used in NLP.
- e Explain the various stages of Natural Language processing.

Q.2 10 marks each

- a What is Word Sense Disambiguation (WSD)? Explain the dictionary based approach to Word Sense Disambiguation.
- **b** Represent output of morphological analysis for Regular verb, Irregular verb, singular noun, plural noun Also Explain Role of FST in Morphological Parsing with an example

Q.3 10 marks each

- a Explain the ambiguities associated at each level with example for Natural Language processing.
- **b** Explain Discourse reference resolution in detail.

Q.4 10 marks each

a

<s></s>	Martin	Justin	can	watch	Will	<e></e>
<s></s>	Spot	will	watch	Martin	<e></e>	
< S >	Will	Justin	spot	Martin	<e></e>	
<s></s>	Martin	will	pat	Spot	<e></e>	

For given above corpus,

N: Noun [Martin, Justin, Will, Spot, Pat]

M: Modal verb [can, will]

V:Verb [watch, spot, pat]

Create Transition Matrix & Emission Probability Matrix

Statement is "Justin will spot Will"

Apply Hidden Markov Model and do POS tagging for given statements

b Describe in detail Centering Algorithm for reference resolution.

Q.5 10 marks each

a For a given grammar using CYK or CKY algorithm parse the statement

"The man read this book"

Rules:

```
\begin{array}{|c|c|c|c|c|}\hline S \to \mathsf{NP} \ \mathsf{VP} & \mathsf{Det} \to \mathit{that} \ | \mathit{this} \ | \ a \ | \ \mathit{the} \\ S \to \mathsf{Aux} \ \mathsf{NP} \ \mathsf{VP} & \mathsf{Noun} \to \mathit{book} \ | \ \mathit{flight} \ | \ \mathit{meal} \ | \ \mathit{man} \\ S \to \mathsf{VP} & \mathsf{Verb} \to \mathit{book} \ | \ \mathit{include} \ | \ \mathit{read} \\ \mathsf{NP} \to \mathsf{Det} \ \mathsf{NOM} & \mathsf{Aux} \to \mathit{does} \\ \mathsf{NOM} \to \mathsf{Noun} & \mathsf{Noun} \\ \mathsf{NOM} \to \mathsf{Noun} \ \mathsf{NOM} \\ \mathsf{VP} \to \mathsf{Verb} & \mathsf{VP} \to \mathsf{Verb} \\ \mathsf{VP} \to \mathsf{Verb} \ \mathsf{NP} \\ \end{array}
```

b Explain Porter Stemmer algorithm with rules

Q.6 10 marks each

- a Explain information retrieval versus Information extraction systems
- b Explain Maximum Entropy Model for POS Tagging