Paper / Subject Code: 89242 / Chemical Reaction Engineering-II

1T00536 - T.E.(Chemical Engineering)(SEM-VI)(Choice Base Credit Grading System) (R-20-21) (C Scheme) / 89242 - Chemical Reaction Engineering-II

QP CODE: 10012961 DATE: 09/12/2022

(3 Hours) Total: 80]

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from the remaining questions.
 - (3) Assume suitable data wherever necessary.
- Q 1. Answer the following questions:

(20)

- (a) Differentiate between Packed bed & fluidized bed reacors.
- (b) What are the first, second and third moments of RTD.
- (c) The Thiele modulus for a first order isothermal reaction for a flat plate geometry catalyst is found to be 2. Calculate the catalyst effectiveness factor.
- d) Enlist various steps involved in a solid catalyzed reaction.
- Q.2.(a) Derive Langmuir-Hinshelwood type of rate equation for the reaction –

$$A+B\leftrightarrow C+D$$

Where desorption of C is rate controlling step.

(10)

(b) A feed comprising of 20% of 1mm particles,30 % of 2 mm particles& 50% of 4 mm passes through a rotating tubular reactor where it reacts with gas to yield a hard solid product according to the SCM with reaction step is rate controlling. The time required for complete conversion of 4 mm particles is 4 h. Determine the residence needed in the tubular reactor for; a) 100 % conversion of solids b) 75 % conversion of solids.

(10)

- Q.3. (a) Derive an expression to calculate time required for complete combustion of particle, when resistance through the gas film is controlling. (10)
 - (b) Explain in detail the contacting patterns in fluid-fluid reactions. (10)
- Q.4. (a) The data given below represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel. Tabulate & construct E Curve. (10)

t, min	0	5	10	15	20	25	30	35
Cpulse, g/l (tracer output	0	3	5	5	4	2	1	0
concentration)	60,							

12961

Paper / Subject Code: 89242 / Chemical Reaction Engineering-II

QP CODE: 10012961

(b)Calculate the time required to burn to completion spherical particles of graphite (radius 12 mm, bulk density 2.4 g/cc) in a 12% oxygen stream at 900oC and 1 atm. Assume gas film resistance to be negligible. Surface reaction rate constant = k" = 25 cm/s (10)

Q.5. (a) The catalytic reaction A → 3R is run in packed bed reactor at 3.5 atm & 115°C. It is desired to treat 1500 mol/hr of pure A 3.5 atms to 32 % conversion the following rate concentration data are available.

Ca, Mol/l	0.04	0.06	0.075	0.09
-r _{A Mol/(h}	3.5	5.7	5 7.2	8.8
KgCata.)	197			

Determine amount of catalyst needed in a packed bed reactor. (10)

- (b) Write short notes on Trickle Bed and Slurry Reactor (10)
- Q.6. Answer the following questions . (Any four): (20)
 - (a) Explain pulse input experiment for RTD measurement.
 - (b) What is the significance of HATTA Modulus?
 - (c) Define true, apparent and bulk density for a catalyst bed.
 - (d) What do you mean by SCM & PCM?
 - (e) Write short note on Tanks in Series Model

12961