3 Hours] [Total Marks: 100

- N.B.: (1) All questions are compulsory.
 - (2) Figures to the right indicate marks for respective subquestions.
- 1. Fill in the blank by choosing the correct option.

(i) Let
$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$
 and $V = \{B \in M_4(\mathbb{R}) : AB = BA\}$. Then, (2)

- (a) dim V = 4 and dim $M_4(\mathbb{R})/V = 12$
- (b) dim V = 8 and dim $M_4(\mathbb{R})/V = 8$
- (c) dim V = 8 and dim $M_4(\mathbb{R})/V = 16$
- (d) None of these.
- (ii) Let α be an orthogonal transformation of the plane such that the matrix of α w. r. t. the standard basis of \mathbb{R}^2 is $\begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$, then α represents a
 - (a) rotation about origin through $\frac{\pi}{4}$.
 - (b) rotation about origin through $\frac{5\pi}{4}$.
 - (c) rotation about the line y = -x. (d) None of the above.
- (iii) A 2×2 matrix A has the characteristic polynomial $x^2 + 2x 1$, then the value of det $(2I_2 + A)$ is
 - (a) $\frac{1}{\det A}$ (b) 0 (c) 2 + $\det A$ (d) 2 $\det A$
- (iv) Let A and B be square matrices such that AB = I then zero is an eigenvalue of
 - (a) A but not B (b) B but not A
 - (c) both A and B (d) neither A nor B.
- (v) If λ is a characteristic root of a matrix A then characteristic roots of -A and $\alpha I A$ respectively are
 - (a) $-\lambda$ and $\alpha \lambda$ (b) $-\lambda$ and α
 - (c) $-\lambda$ and λ (d) None of these.
- (vi) Which of the following statements are true (2)
 - (p) If the characteristic roots of two $n \times n$ matrices are same then their characteristic polynomials are same.
 - (q) If the characteristic polynomials of two $n \times n$ matrices are same then their characteristic roots are same.

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

- (r) If eigen values of two $n \times n$ matrices are same then their eigen vectors are same.
- (s) The characteristic roots of two $n \times n$ matrices are same but their characteristic polynomials may not be same.
- (a) (q) and (s) are true. (b) (p), (r) are true.
- (c) (p), (q) and (r) are true. (d) only (q) is true.
- (vii) The minimal polynomial of the diagonal matrix (2) $A = \text{diag } \{1, -1, 1, -1\} \text{ is}$
 - (a) $x^2 + 1$ (b) $x^2 1$ (c) $(x^2 1)^2$ (d) None of these.
- (viii) Let $A = \begin{bmatrix} 0 & a \\ 0 & -a \end{bmatrix}$ (2)
 - (a) A is orthogonally diagonalizable if and only if a=1
 - (b) A is not diagonalizable for any $a \in \mathbb{R}$.
 - (c) A is diagonalizable but not orthogonally diagonalizable.
 - (d) None of these.
 - (ix) If $A, B, C, D \in M_2(\mathbb{R})$ such that A, B, C, D are non-zero and not (2)diagonal. If $A^2 = I$, $B^2 = B$, $C^2 = 0$, $C \neq 0$ and every eigenvalue of D is 2, then
 - (a) A, B, C, D are all diagonalizable.
 - (b) B, C, D are diagonalizable.
 - (c) A, B are diagonalizable
 - (d) Only D is diagonalizable.
 - (x) The quadratic form $Q(x) = x_1^2 + 4x_1x_2 + x_2^2$ has (2)
 - (a) rank = 1, signature = 1.
 (b) rank = 2, signature = 0.
 (c) rank = 2, signature = 2.
 (d) None of the above.
- (a) Answer any **ONE**
 - (i) Let V be a finite dimensional inner product vector space and (8) $T:V\to V$ be a linear transformation. Prove that the following statements are equivalent.
 - (p) T is orthogonal.
 - (q) ||T(X)|| = ||X|| for all $X \in V$.
 - (r) If $\{e_i\}_{i=1}^n$ is an orthonormal basis of V, then $\{T(e_i)\}_{i=1}^n$ is also an orthonormal basis of V.
 - (ii) State and prove the Cayley Hamilton Theorem. (8)
 - (b) Answer any TWO
 - (i) State and prove the 'First Isomorphism Theorem of vector (6)space' (Fundamental theorem of vector space homomorphism).
 - (ii) Let (V, <>) be an n dimensional inner product space and (6)When be a subspace of V of dimension n-1. Let u be a unit

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

vector orthogonal to W. Show that $T: V \to V$ defined by $T(x) = x - 2\langle x, u \rangle u$ is an orthogonal linear transformation such that T(w) = w, $\forall w \in W$ and T(u) = -u.

- (iii) Let $A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \end{pmatrix}$. A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ is defined by T(x) = AX(X) being a column vector in \mathbb{R}^3). Find kerT, a basis of kerT and $\mathbb{R}^3/kerT$.
- (iv) Show that $\alpha: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $\alpha(x,y,z) = (\frac{x}{2} + \frac{\sqrt{3}}{2}z)$ (6) $1, y, \frac{\sqrt{3}}{2}x \frac{z}{2} + 5$) is an isometry. Express it as a composite of an orthogonal transformation and a translation.

3. (a) Answer any **ONE**

- (i) Define eigen value of a real square matrix. Show that, if λ is an eigen value of a real $n \times n$ matrix A, then
 - (p) λ is an eigen value of A^t .
 - (q) λ^k is an eigen value of A^k for $k \in \mathbb{N}$. Hence $f(\lambda)$ is an eigen value of f(A), for a polynomial f(x) over \mathbb{R} .
 - (r) If A is invertible, then λ^{-1} is an eigen value of A^{-1} .
- (ii) Show that minimal polynomial of a real matrix $A_{n\times n}$ divides every polynomial which annihilates A. Further show that λ is a root of the minimal polynomial of matrix A if and only if λ is a characteristic root of A.

(b) Answer any **TWO**

- (i) If A is an $n \times n$ real matrix, and $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct eigen value of A with X_1, X_2, \dots, X_k as corresponding eigenvectors, then show that X_1, X_2, \dots, X_k are linearly independent. (6)
- (ii) Let $A_{n\times n}$ be a real matrix. if A has n distinct characteristic roots, then prove that the characteristic polynomial of A = the minimal polynomial of A.
- (iii) Find the eigen values and eigen vectors of $A_{2\times 2}$ such that $\sum_{i=1}^{2} a_{ij} = 1 \text{ for } i = 1, 2.$ (6)
- (iv) Let v be a non-zero vector in \mathbb{R}^n and $A = vv^T$ where v is treated as a $n \times 1$ column vector. Find the minimal polynomial of A.

4. (a) Answer any **ONE**

(i) Define an orthogonally diagonalizable matrix. Show that every real symmetric matrix is orthogonally diagonalizable.

Paper / Subject Code: 24231 / Mathematics: Linear Algebra

- (ii) Let A be real symmetric matrix of order n. Show that characteristic roots of A are real. Also show that if λ_1, λ_2 are distinct eigen values of A and X_1, X_2 are corresponding eigen vectors then X_1, X_2 are orthogonal.
- (b) Answer any **TWO**
 - (i) Show that an $n \times n$ matrix A is diagonalizable if and only if \mathbb{R}^n has a basis consisting of eigen vectors of A.
 - (ii) Show that every quadratic form $Q(x_1, x_2, \dots x_n)$ over \mathbb{R} can be reduced to standard form $\sum_{i=1}^{n} \lambda_i y_i^2$ by an orthogonal change of variables X = PY, where X, Y are column vectors in \mathbb{R} and P is an $n \times n$ orthogonal matrix.
 - (iii) For $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ find a non-singular matrix P such that $P^{-1}AP$ is a diagonal matrix. Hence or otherwise find $P^{-1}AP$ and $P^{-1}AP$ is a diagonal matrix. Hence or otherwise find $P^{-1}AP$ is a diagonal matrix.
 - (iv) Let A be a 13×13 real matrix of rank 1. Find the eigen values and show that geometric multiplicity is equal to algebraic multiplicity for each eigen value. (6)

5. Answer any **FOUR**

- (a) Find the orthogonal transformations in \mathbb{R}^3 which represent reflections with respect to 2x y + z = 0.
- (b) Express the characteristic polynomial of aI + bA in terms of the characteristic polynomial of A. (5)
- (c) Prove or disprove: Two matrices are similar if and only if their (5) characteristic polynomials are same.
- (d) Define invariant subspace with respect to a linear transformation. (5) Check which of $V = \{(x,0) : x \in \mathbb{R}\}$ and $W = \{(x,-x) : x \in \mathbb{R}\}$ are $T : \mathbb{R}^2 \to \mathbb{R}^2$ invariant where T(x,y) = (y,x). Also identify the eigen value of T with respect to which W is an eigen space.
- (e) If $A^2 = A$ for non-zero $n \times n$ matrix A then show that algebraic (5) multiplicity of eigen value 1 is rank A.
- (f) Find value of k, for which the symmetric matrix associated to the quadratic form $3x_1^2 + x_2^2 + 2x^2 + 2x_1x_3 + 2kx_2x_3$ is positive definite. State the result used.
