

QP Code: 5561

[Total Marks: 80]

- N.B. (1) Question No.1 is compulsory
 - (2) Answer any three questions out of the remaining five questions.
 - (3) Assume suitable data if necessary and state them clearly.
 - (4) Figures to the right indicate Full Marks.
- Q.1. Write Short notes on the following: --
 - (a) 3D Transformations.
 - (b) General rules of mesh generation for Finite Element formulation.
 - (c) Product life cycle with CAD overlay.
 - (d) Penalty approach used in FEM.
- Q.2. (a) What is product data exchange? List various data exchange formats available 12 in the market. Explain any one in detail.
 - (b) Compare DDA and Bresenham's algorithm.

8

- Q.3. (a) A three bar truss made of steel (E = 200 KN/mm²) is subjected to the horizontal forces of 30 KN and 20 KN, and the vertical force of 10 KN as shown in figure below. The cross-sectional area of each element is 300 mm². Using FEM, determine:-
 - (i) The Nodal displacements.
 - (ii) The stresses in 'each element.
 - (iii) The reaction forces at the supports.

- (b) Explain pre-processing, processing and post-processing with reference to 8 FEM software.
- Q.4. (a) Consider the bar shown in Figure below. An axial load $P_1 = 40 \times 10^3 \text{ N}$ and $P_2 = 60 \times 10^3 \text{ N}$ is applied as shown. The modulus of elasticity is $E = 140 \times 10^3 \text{ N}$

[TURN OVER

MD-Con. 6895-15.

 10^9 N/m² and areas of the three portions are $A_1 = 70$ mm², $A_2 = 60$ mm² and $A_3 = 40$ mm² respectively. The lengths of the three portions are $L_1 = 50$ mm, $L_2 = 30$ mm and $L_3 = 40$ mm respectively. The load P_1 is applied at the start and P_2 , at the end of portion 3. Using the elimination approach for handling boundary conditions, do the following:

- (a) Determine the nodal displacements.
- (b) Determine the stress in each material.
- (c) Determine the reaction forces.
- (d) Strain in each element.

(b) Formulate stiffness matrix for the Beam element.

5

Q.5. (a) Explain any one algorithm for polygon filling.

- 10 10
- (b) Derive a transformation matrix for rotating an object about the axis passing through the origin and point (8, 0,10).
- Q.6. Write short notes on :-

20

- (a) Applications of F.E.A.
- (b) Window and viewport transformation.
- (c) Mesh compatibility in FEA.
- (d) CSG approach and B-rep approach.