J. E. Bern I (CBGs) ETRX Electromagnetic Eng

QP Code: 14818

(3 Hours)

Total Marks: 80

N.	()	1) Question No.1 is compulsory. 2) Solve any Three questions form remaining five questions. 3) Draw a neat and clean diagram whenever necessary. 4) Assume suitable data if required.	
1.	(a) (b) (c) (d)	what do you understand by conservative field. Derive wave equations for time harmonic fields. The radiation resistance of antenna is 72Ω and the loss resistance is 8 Ω. Calculate its directivity in dB if the power gain is 16. Explain the important advantages and drawback of FDM. Define critical frequency, MUF and OWF.	20
2.	` '	State and Explain Maxwell's equations in differential and internal form for static field. A 10 GHz plane wave travelling in free space has an amplitude of E _x =10V/m Find - (i) The phase constant (ii) Intrinsic impedance and (iii) The amplitude and the direction of H	8
	(c)	Explain the operating modes of helical antennas.	4
3.	(a)	Explain the mechanism of ionospheric propagation. A high frequency radio link has to be established between two points at a distance of 2000 km. on the earth's surface. Considering the height of 200km and critical frequency of 5MHz. Calculate MUF for given path.	8
	(b)	Derive an expression for radiation resistance of an infinitesimal dipole antenna and explain its significance.	8
	(c)	Derive Laplace's and Poisson's equations.	4
4.	(a)	Find the transmission and reflection coefficients at the boundary for normal incidence. Given that for region 1: $\mu_{r1} = 1$, $\epsilon_{r1} = 9$ and for region 2 is a free space. Consider the perpendicular polarization.	8
	(b)	Derive an expression for vector magnetic potential wave equation.	8
	(c)	Explain the physical significance of the terms ∞ , β and γ related to wave propagation in lossy dielectrics.	4
5.	(a)	Give the comparison of FDM, FEM and MOM.	8
	(b)	Determine the Poynting vector theorem and explain the power flow terms	8
	(c)	due to the time varying fields. The height of monopole anternna is $\lambda/100$ what is the radiation resistance.	4
	(0)	The neight of inohopote affectina is 77 foo what is the fadiation resistance.	-
6.	Wri	te short notes on- (a) Boundary conditions for static E and M fields. (b) Polarization of waves. (c) Antenna parameters.	20
		(d) Space wave propagation	