Paper / Subject Code: 30301 / OPERATING SYSTEMS/TE/V/ CBGS/ 15/11/18

T.E. SEM-V / COMPUTER /CBGS/15.11.2018~

(3 Hours)

[Total Marks: 80]

Q.P. Code: 22651

N.B.	1. Q.no.1 is compulsory	
	2. Attempt any three out of the remaining five questions	
Q.1.	(a) Explain the critical section problem in brief	5
	(b) What do you mean by virtual memory?	5
	(c) Explain the system components in Windows Architecture	5
	(d) State any five system calls	5
Q.2.	(a) Given the following queue - 95, 180, 34, 119, 11, 123, 62, 64, in FIFO order with	10
	Read-write head initially at the track 50 and the tail track being at 199, discuss the	
	following disk scheduling algorithms-	
	i. FCFS ii. SSTF iii. SCAN iii. LOOK	
	(b) Explain the readers/writers problem. Suggest a solution for the same	10
Q.3.	(a) Explain file management in UNIX	10
Q.5.		10
	(b) What is deadlock? Explain the deadlock avoidance in detail	10
Q. 4.	(a) Explain different page replacement policies with a suitable example	10
	(b) Differentiate the following:	10
	(i) Paging vs segmentation (ii) Monolithic vs Microkernel Operating System.	

Q.5.	(a) Consider the following set of processes	, with the length of CPU burst in miliseconds	10

Process	Burst time	Priority
P1	8	4
P2	6	1
P3	1	2
P4	9	2
P5	3	3

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0. Draw Gnatt charts for the following scheduling algorithms- FCFS, SJF, Non-preemptive priority and RR(quantum=1) and also calculate the turnaround time, average waiting

(b) Explain the hardware support for paging	10
Write notes on the following:	20

(a) Thrashing and working set model

- (b) State transition in UNIX
- (c) I/O buffering techniques
- (d) Semaphores.

Q.6.