16/12/16

QP Code:552400

(3 Hours)

[Total Marks:80

(20)

N.B.: (1)) Question	No.	1	is	compulsory	
-----------	------------	-----	---	----	------------	--

- (2) Solve any three questions out of remaining five.
- (3) Figures to right indicate full marks.
- (4) Assume suitable data where necessary.
 - 1. Attempt any five out of six questions
 - a) What are the various regions that a transistor can operate? In which region can a transistor be operated if it is used as a switch?
 - b) Give some applications of OpAmp and explain the block diagram of Op Anip.
 - c) Explain the working of LCD.
 - d) Minimize the following boolean expression wsing K-map

$$F(A,B,C,D) = \sum m(0,3,7,11,15) + d(1,2,5)$$

- e) Draw the truth table and excitation table for S-R flip flop.
- f) Convert (101101.1101)₂ to decimal, octal and hexa decimal.
- 2 a) What is the need for biasing? Explain voltage divider bias and locate the Q points (10)
 - b) Draw the truth table for full adder and realize using 3:8 decoder (10)
- 3 a) Explain the working of Monostable Multivibrator using IC555. Draw the waveforms and give its applications (10)
 - b) Design and implement one digit BCD adder using IC- 7483. (10)
- 4 a) Design and implement binary to gray code converter (10)
 - b) Realize the following expression using only one 8:1 MUX and few logic gates $F(A,B,C,D)=\sum m(0,3,6,8,11,13,15)$ (05)
 - c) Explain the practical differentiator circuit using op-Amp. (05)
- 5 a) Explain differential amplifier and elaborate on any one method to improve the CMRR (10)
 - b) Design a half adder using VHDL (05)
 - c) Design mod-3 up counter using JK Flip Flop (05)
- 6 Write short notes on any four
 a) Bidirectional shift registers (20)
 - b) Full subtractor
 - c) Basic Logic Gates
 - d) BCD and Excess-3 code
 - e) JFET