Sem III CBGS (ETRX) Digital Ckts & Design

QP Code: 30651

(3 Hours)

Total Marks: 80

N.B.: (1) Question No. 1 is compulsory.	
(2) Solve any three from remaining five questions.	
(3) Draw neat logic diagram and assume suitable data wherever necessary.	
Q 1 (a) Interfacing between CMOS and TTL	05
(b) Explain Shift Register and its applications	60.
(c) PLA and PAL	05
(d) Draw truth table and logic diagram of Full Subtractor	05
Q 2 (a) Write a VHDL code for Full Adder	10
(b) Design MOD 8 asynchronous counter.	10
Q 3 (a) Design a mealy sequence detector to detect 0101 using D flip-flops and logic gates	10
(b) Design a circuit with optimum utilization of PLA to implement the following functions	10
$F1 = \sum m (0, 2, 5, 8, 9, 11)$ $F2 = \sum m (1, 3, 8, 10, 13, 15)$ $F3 = \sum m (0, 1, 5, 7, 9, 12, 14)$	
$F2 = \sum m (1, 3, 8, 10, 13, 15)$	
$F3 = \sum m (0, 1, 5, 7, 9, 12, 14)$	
Q 4 (a) Implement following function using 8:1 MUX and logic gates	10
$P(A,B,C,D) = \sum_{m} (1,2,6,7,8,10,13,14)$	
(b) Construct ring counter using IC 74194 and the output waveform	10
Q 5 (a) Use K-map to reduce following function and then implement it by NOR gates.	10
$F = \pi M (1, 2, 5, 8, 10, 12, 15) + d (0, 6)$	
(b) Design 6 bit up counter using IC 74163, draw a circuit diagram and explain its working.	10
6. Write short notes on any three	20
i) JTAG and BIST	
ii) Stuck at '0' and '1' faults	
iii) XC 4000 FPGA architecture block diagram	
iv) Noise Margins	

FW-Con.: 11010-16