	Time: 3 Hours		Marks: 80	Iarks: 80	
N.B. :	2. So 3. Dr	estion One is Compulsory. lve any Three out of remaining. aw neat and clear diagrams. sume suitable data if required			
Q1	a)	What are universal gates? Why are they called so? Explain with su example.	uitable	4M	
	b)	Perform following subtractions using 7's complement method. a) (20) ₅ – (14) ₅ b) (20) ₁₀ –(15) ₁₀		4M	
	c)	Perform (34) ₁₀ –(12) ₁₀ in BCD using 10's complement method	SAN ON	4M	
	d)	Explain lockout condition. How can it be avoided		4M	
	e)	If the 7 bit hamming code word received by receiver is 1011011,		4M	
		assuming the even parity, state whether the received code word is or wrong? If wrong locate the bit having error and extract corrected			
Q2	a)	Reduce using Quine McClusky Method & realize the operation us NOR gates only. F (A,B,C,D) = Σ m (0,1,2,8,10,11,14,15)	ing	10M	
	b)	Explain one digit BCD adder		10M	
Q3	a)	Construct 32:1 MUX using 8:1 MUX only. Also comment about s lines used.	select	10M	
	b)	Solve the following using K-Map		5M	
	,	$F(A,B,C,D) = \pi M(3,4,5,6,7,10,11,15)$		53.6	
	c)	Design full adder using half adders and few gates		5M	
Q4	a)	Convert SR Flip flop to JK flip flop and T flip flop		10 M	
	b)	Design 3-bit asynchronous up-down counter		10M	
Q5	a)	Design 4-bit Binary to Gray Code Convertor.		10M	
- C	b)	What is race around condition? How it is overcome in Master Slav	ve JK	5M	
20 6		Flip Flop?			
	c)	Design 1-Bit Magnitude comparator using logic gates.		5M	
Q6		Write a short note on any Four		20M	
	a)	VHDL Modelling Styles			
	b)	TTL and CMOS Logic Families			
	c)	SISO and PISO Shift Registers			
100 00 TO	d)	ALU			
	(e)	Twisted ring counter			

76197 Page **1** of **1**