		(3 hours) Total Mark	s: 80
N.B	2. A 3. A	uestion No. 1 is compulsory ttempt any Three out of remaining ssume suitable data if necessary and justify the assumptions gures to the right indicate full marks	
Q1.	[A]	Explain any two Fuzzy membership functions.	05
	[B]	Show Mc-culloh Pit Model to implement OR gate.	05
	[C)	Explain with diagram different activation functions used in Neural Network.	05
	[D]	Explain with an example Union and Intersection of two fuzzy sets.	05
Q2	[A]	What is learning? Explain the different types of learning with example. Compare the different learning rules.	10
	[B]	Let X be the Universe of well-known objects such as	10
		X = {car, boat, house, bike, tree, Mountain}	
		Let Y be the Universe of simple geometrical shapes such as	
		Y={square, octagon, triangle, circle, ellipse}	
		Following are the fuzzy sets of objects such as "car", "square" and "corner"	
		$A = car = \{1.0/car + 0.7/boat + 0.3/house + 0.2/bike + 0.4/tree + 0.0/Mountain\}$	
		$B = square = \{1.0/square + 0.5/octagon + 0.6/triangle + 0.0/circle + 0.1/ellipse\}$	
		$C = corner = \{0.6/square + 0.8/octagon + 0.5/triangle + 0.0/circle + 0.2/ellipse\}$	
		i. Find the relation R between "car" and "square".	
	ST.	ii. Find the relation S between "square" and "corner".	
		iii. Find the relation T between "car" and "corner" using Max-Min composition.	
Q3	[A]	Determine the weights after one iteration for Hebbian learning of a single neuron network starting with initial weight vector $\mathbf{w} = [1, 0, -1, 0.5]$ and inputs as	10
		$X_1 = [1, -2, 0.5, -1],$	
	1000 E	$X_2 = [1, -1.5, -2, -0.5],$	
	2 4 9 9 4 9	$X_3 = [1, 0, -1, 1.5]$ and c=1.	
	3007	Use bipolar binary activation function.	
	[B]	Explain with example Centre of largest area and weighted average method of Defuzzification.	10

Paper / Subject Code: 59207 / Elective I: Computational Intelligence.

Q4	[A]	Describe in brief Single Solution Particle Swarm Optimization method.	10
	[B]	Explain the steps in Genetic Algorithm with a suitable Example.	10
Q5	[A]	Explain with examples Binary SVM.	10
	[B]	With the help of a flow chart explain the working of Learning Vector	10
		Quantization.	
Q6		Describe the methods (any two)	20
		a. Natural Immune System	
		b. TSP, Best path finding using Ant algorithm	660
		c. Color Recipe prediction - Single MLP approach	

58031 Page 2 of 2