B.E. Electrical VII - CBGS Control Syptem - II QP Code

(3 Hours)

[Total Marks: 80]

Note:

- Question No. 1 is compulsory.
- Answer any three from the remaining five questions.
- Assume suitable data if necessary and justify the same.
- Figures to the right indicate the marks.
- 1 Each question carry five marks

20

- a Given a point on the z-plane, how can one determine the associated settling time and peak time?
- b Under what conditions would you use an observer in your state space design?
 Which plant representation lends itself to easier design of an observer? Why?
- c Draw the bode plot of a typical lag compensator. Why it is called as a lag compensator?
- d Explain the scan cycle of PLC.
- 2 a Use frequency response methods to design a lead compensator for a unity feedback system where G(s) = K(s+7) / s(s+5)(s+15) and the following specifications are to be met: percent overshoot=15%, Settling time=0.1sec, and Kv=1000.
 - b Explain the memory unit of PLC

10

15

10

- Consider the following transfer function: $G(s) = \frac{(s+6)}{(s+3)(s+8)(s+10)}$. If the system is represented in parallel form design a controller to yield a closed loop response of 10% overshoot with a settling time of 1 sec. Design the controller by first transforming the plant to phase variables. Draw the plant representation in parallel form with the controller gains.
 - b Draw the implementation for the digital compensator defined by $Gc(z) = \frac{(z+0.5)}{z^2-0.5z+0.7}$

05

[TURNOVER

B.E. Electrical VII - CBGS Control System -II QP Code: 31374

4 a Design an integral controller to yield a 10% overshoot, 0.5 sec. settling time and zero steady state error for a step input for the following plant.

$$x = \begin{bmatrix} -2 & 1 \\ 0 & -5 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u;$$
 $y = \begin{bmatrix} 1 & 1 \end{bmatrix} x$

- b Compare Timer ON, Timer OFF and Retentive Timer instructions of PLC with timing diagrams. Explain the significance of cascade timer with an example.
- Given $T(z) = \frac{N(z)}{D(z)}$ where $D(z) = z^4 + z^3 2z + 0.5$, use the Routh-Hurwitz 10 criterion to find the number of z-plane poles of T(z) inside, outside and on the unit circle. Is the system stable?
 - b What is meant by Integral wind-up? How it will affect the performance of the system? Explain a simple anti wind up circuit with block diagrams to mitigate the wind-up effect.
- 6 a Explain four types of arithmetic functions performed by PLC.
 - b Explain Input/Output addressing formats in PLC. Also explain the relationship between the number assigned to the data files in memory and the number used by the I/O terminal using suitable diagrams.