Q.P. Code: 724303

(3 Hours)

Marks: [80]

N.B : (1) Question No. 1 is Compulsory.

- (2) Attempt any Three questions out of the remaining Five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume any suitable data wherever required, but justify the same.
- (b) Explain Regression line, Scatter plot, Error in prediction and Best fitting line.
 (c) Describe the essential steps of K-means algorithm for clustering analysis.
 (d) What is SVM? Explain the following terms: hyperplane, separating hyperplane, margin and support vectors with suitable example.

 (05)
- 2) (a) Explain in detail Temporal Difference Learning. (08)
 - (b) Create a decision tree for the attribute "class" using the respective values: (12)

eyecolour	married	Dex (hairlength	class
brown	yes	elam	long	football
blue	3/89	male	short	football
brown	yes W	male	long	football
brown	no C	female	long	netball
brown	no	female	long	netball
blue	120	male	long	football
brown	no	female	long	netball
brown	no	male	ahort	football
brown	yes	female	short	netball
brown	110	female	long	netball
blue	no	male	long	football
blue	no	male	short	football

ARIONA

/			
3) (a) What are the different Hidden Markov Models?			(10)
(b) What is	s Reinforcement Learning? Explain with the help of an examp	ple.	(10)
C ₃ (38)	K-means algorithm on given data for k=3. Use C ₁ (2), C ₂ as initial cluster centres. 2, 4, 6, 3, 31, 12, 15, 16, 38, 35, 14, 21, 23, 25, 30	(16) and	5,69,59
(b) Explain v	with suitable example the advantages of Bayesian approach o	ver classica	1
	es to probability.	100	(10)
5) (a) Explain	in detail Principal Component Analysis for Dimension Red	ction.	(10)
0	otimal hyperplane for the data points:		(10)
{(1,1), (2,1), (1,-1), (2,-1), (4,0), (5,1), (5,-1), (6,0)}		
a. M	Notes on the following: (Any two) fachine Learning applications		(20)
b. C	lassification using Back Propagation Algorithm		
c. Iss	lassification using Back Propagation Algorithm sues in Decision Tree		