B.E. VII CBGS
CIVIL Env. Engy-II

10:12-15

QP Code: 5976

(REVISED COURSE)
(3 HOURS)

[TOTAL MARKS: 80]

N.B.:	(1)	Question	No. 1	15	compu	lsory.
-------	-----	----------	-------	----	-------	--------

(2) Attempt any three questions from remaining five questions.

(3) Assume any suitable data but state the same.

(4) Illustrate answer with sketches wherever necessary.

(4) Illustrate answer with sketches wherever necessary.	
Q1 (a) State principles governing design of building drainage.	(5)
(b) List various control measures of air pollution.	(5)
(c) Compare one pipe and two pipe system.	(5)
(d) The CO content of an air sample is 90µg/m³ at 0°C and 1 atm. Pressure. Convert	
it to PPM. Assume necessary data.	(5)
	(5)
Q2 (a) Draw a neat sketch of automatic flushing tank and explain the operation of flushing.	(5)
(b) Design imhoff tank for 25000 people and sewage flow 180 lpcd. Assume data	(5)
(c) Explain the biological action and process of sludge digestion	(3)
Q3 (a). Why dewatering of sludge is necessary? Explain the method of dewatering the sludge	
on sludge drying beds.	(8)
(b) What are the basic differences between aerobic and anerobic processes	(6)
(c) If 5 day 20° c BOD of wastewater is 350 mg/l, what will be the it's 7 day,	(6)
25° C BOD? K ₂₀ = 0.1 /d. Assume data if required.	
Q 4 (a) Draw the flow chart of the municipal sewage treatment plant by using activated	(10)
Sludge process and trickling filter	
(b) Determine the size of high rate tricking filter for the following data:	(10)
(i) Sewage flow: 4 MLD (ii) recirculation ratio: 13	
(iii) BOD5 of raw sewage: 280 mg/l (iv) BOD removal in PST = 25%	
(v) Final effluent BOD5 desired = 30 mg/l.	
	700
Q 5 (a) Explain in detail with sketch sedimentation tank and its design parameters.	(8)
(b) Find the volume of digester for population equivalent -7000, loading rate-0.09 kg/ca	ipita/day,
volatile solids in raw sludge -70% moisture content of raw sludge-96%, digestion p	lge -02%
days, volatile solids reduction during digestion -50%, moisture content of digested slud	(6)
storage period required for digested sludge -90 days. (c) What is biological treatment process? Explain aerobic and anaerobic process in detail.	(6)
(c) What is biological treatment process: Explain acroole and anacroole process in detail.	10/
Q 6 (a) Explain intercepting trap in detail.	(4)
(o (a) Exhiam more pung map in domin	105

Proportionate depth (d/D)	Proportionate velocity(v/V)	Proportionate discharge(q/Q)	
0.2	0.615	0.088	
0.4	0.902	0.3364	
0.6	1.072	0.6711	
0.8	1.140	0.9781	

(c)A 30 cm dia sewer having an invert slope of 1:200 was flowing full. What would be velocity of

flow and discharge? (n=0.013). Is the velocity self-cleasing? What would be velocity and

(b) Explain construction of sewers and steps involved in laying of it.