Paper / Subject Code: 51421 / Enginering Mathematics III

1T01233 - S.E.(Information Technology Engineering)(SEM-III)(Choice Base Credit Grading System)

(R-19) (C Scheme) / 51421 - Enginering Mathematics III

QP CODE: 10037856 DATE: 21-11-2023

(Time: 3 Hours) Max. Marks: 80

N.B. (1) Question No. 1 is compulsory.

- (2) Answer any three questions from Q.2 to Q.6.
- (3) Use of Statistical Tables permitted.
- (4) Figures to the right indicate full marks

Q1.

(a) Find the Laplace transform of
$$\frac{\cos 2t \sin t}{e^t}$$
 [5]

(b) Find k such that
$$f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \frac{kx}{y}$$
 is analytic [5]

Y: 12, 18, 25, 25, 50, 25.
(d) Find the inverse Laplace transform of
$$\log \left(\frac{s^2 + a^2}{s^2 + b^2}\right)$$
.

 $\frac{+a^2}{+b^2}$.

Q2.

(a) A continuous random variable has probability density function

$$f(x) = k(x - x^2), 0 \le x \le 1.$$

 $f(x) = 0$ otherwise

(b) Find the Laplace transform of
$$e^{-3t} \int_0^t u \sin 3u \, du$$
. [6]

(c) Obtain the Fourier series to represent $f(x) = x^2$ in $(0, 2\pi)$

Hence show that
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$$
 [8]

Q3.

(a) If the imaginary part of the analytic function
$$w = u + i v = f(z)$$
 is $V = x^2 - y^2 + \frac{x}{x^2 + y^2}$, then show that $u = -2xy + \frac{y}{x^2 + y^2}$.

(b) Find inverse Laplace transform of
$$\frac{2s^2 - 6s + 5}{(s^3 - 6s^2 + 11s - 6)}$$
 [6]

(c) Fit a second-degree parabolic curve and estimate y when x = 10

Q4.

(a) Obtain the Fourier series to represent
$$f(x) = x^3$$
 in $(-\pi, \pi)$. [6]

(b) Find (i) the equation of the lines of Regression (ii) coefficient of correlation for the following data

(c) Prove that
$$\int_0^\infty e^{-\sqrt{2}t} \frac{\sin t \sin ht}{t} dt = \frac{\pi}{8}.$$
 [8]

Q5.

- (a) Find the orthogonal trajectories of the family of curves $x^3y xy^3 = c$. [6]
- (b) Find the moment generating function of the distribution

$$X$$
 : -2 3 1 $P(X = X)$: $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{6}$

hence find first four central moments . [6]

(c) Obtain the half range cosine series of f(x) = x in (0, 2)

Hence show that
$$\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} \dots$$
 [8]

- Q6.(a) Using convolution theorem Find the inverse Laplace transform of $\left[\frac{S^2}{(S^2+2^2)^2}\right]$
- (b) The probability density function of a random variable X is

$$X$$
: 1 2 3 4 5 6 7
 $P(X=x)$: k 2 k 3 k k^2 $k^2 + k$ 2 k^2 4 k^2
Find k , $p(X<5)$, $P(X>5)$

.(c) If $v = 3x^2y + 6xy - y^3$, show that v is harmonic function

And find the corresponding analytic function . [8]