Duration: 3hrs [Max Marks: 80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

[20]

a If R be a relation in the set of integers z defined by

$$R = \{(x, y): x \in z, y \in z, x - y \text{ is divisible by } 3\}$$

Show that the relation R is an equivalence relation.

b Prove using Mathematical Induction that

$$P(n) = 1.1! + 2.2! + \dots + 3.3! = (n+1)! - 1$$

- c Design an FSM in which input is valid if it ends in "1011" over $\Sigma = \{0,1\}$
- d Design NFA for the regular expression

$$R = (0(0+1)^*10)$$

- e Differentiate between DFA and NFA
- 2 a Define Poset. Draw Hasse diagram which represents the partial order relation. [10]

 $R = \{(a, b) | a \text{ divides } b \} \text{ on } \{1, 2, 3, 4, 6, 8, 12\}$

b Convert the following NFA to DFA:

[10]

Q/∑	0	100
\rightarrow p	p,q	p
q	r,s	t
r	p,r	t
s*	ф	ф
t^*	ф	ф

3 a Simplify the following CFG:

[10]

$$S \to aAa \mid bBb \mid BB$$

$$A \to C$$

$$B \to A \mid S$$

$$C \to S \mid \in$$

b Write a short note on Warshall's algorithm.

[10]

Let $A = \{a1, a2, a3\}$ and R be a relation on A whose matrix is:

$$Mr = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
. Find transitive closure of R using Warshall's algorithm.

28401

- 4 a Design PDA to check odd palindrome over $\Sigma = \{0,1\}$ [10]
 - b Give and explain formal definition of pumping lemma for regular language and prove that the following language is not regular.

$$L = \{ a^m b^{m-1} \mid m > 0 \}$$

- 5 a Design Moore machine for the following: If input ends in '101' then output [10] should be 'A', if input ends in '101' output should be 'B', otherwise output should be 'C' and convert it into Mealy machine.
 - b Design a finite automaton to check divisibility by 3 to binary number. [10]
- 6 a Determine if the following graphs G1 and G2 are isomorphic or not. [10]

- b Define injective, surjective and bijective functions. If $f: R \to R$ and $g: R \to R$ [10] are defined by the formulas: f(x) = x + 2 and $g(x) = x^2$. Find
 - 1. *f.g.f*
 - 2. g.f.g