T.E. (SEM.-VI)(CBSGS) (MECHANICAL ENGG.) FINITE ELEMENT ANALYSIS **QP Code: 5003** (3 Hours) Max. Marks: 80 ## Note: 1. Question 1 is Compulsory - 2. Solve any three from remaining five - 3. Figures to right indicate full marks - 4. Assume suitable data if necessary | Question No. | | Max.
Marks | |--------------|--|---------------| | Q.1 | a) Explain Pre and post processing in FEMb) Derive shape function for 1D quadratic element in natural co- | 5 5 | | | ordinates c) Explain the significance of Jacobian matrix. d) Explain Convergence of results | 5 5 | | Q.2 | a) Solve the following differential Equation using Galerkin Method. | 10 | | | $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} - 6y = 0 \qquad 0 < x < 1.$ | | | | Boundary Conditions are: y(0)=1, y'(1)=0.1 | | | , | Find y(0.2) and compare with exact solution. | 10 | | | b) For the given, steel blocks supporting rigid plates shown in figure, determine displacement matrix and stresses in each | | | Properties | Steel | Aluminium | Brass | | |------------------------|---------------------|---------------------|-------------------|--| | C/S Area (mm²) | 200 | 370 | 370 | | | E (N/mm ²) | 2 x 10 ⁵ | 7 x 10 ⁴ | 8.8×10^4 | | **[TURN OVER** - Q.3 - a) What do you mean by consistent and lumped mass matrices? Derive the same for linear bar element. - 10 - b) Consider the truss shown in figure. Given E = 210 GPa and cross section area A = 1 cm² for each element. Determine - 10 - 1. Displacement at each node. - 2. Stresses induced in each element. - 3. Reaction at supports - Q.4 - a) It is required to carry out one dimensional structural analysis of a circular bar of length 'L', fixed at one end and carries a point load 'P' at other end. Find the suitable differential equation with required boundary condition (justify) and solve it by using Rayleigh - Ritz method for two linear element. - 10 10 b) A composite wall consists of three materials, as shown in figure. The outer temperature $T_0 = 20$ °C. Convection heat transfer takes place on the inner surface of the wall with T_∞ = 800°C and h = 30 W/m² °C. Determine temperature distribution in the wall. $$K_1 = 25 \text{ W/m}^{\circ}\text{C}$$ $$K_2 = 30 \text{ W/m}^{\circ}\text{C}$$ $$K_3 = 70 \text{ W/m-°C}$$ 0.3 m 0.2 m To = 20° C 0.15 m Q.5 a) The nodal coordinate of the triangular element are as shown in figure. At the interior point P, the x-coordinate is (4.5) and N₁=0.3. Determine N₂, N₃ and y-coordinate of point P. 10 b) For a CST element the nodal displacement vector $Q^T = [0,0,0,0,2,-0.1]$ mm. Find the element stress. Take E = 200GPa, plate thickness E = 5mm and Poisson's ratio = 0.3 10 Q.6 - a) What are serendipity elements? Derive and graphically represent interpolation functions for 8 nodded Quadrilateral elements. - b) Find the natural frequency of axial vibrations of a bar of uniform cross section of 20mm^2 and length 1m. Take E = 2 x 10^5 N/mm^2 and $\rho = 8000 \text{ kg/m}^3$. Take two linear elements. 10 10