QP CODE: 24395

(3 Hours)

Marks 80

05

- N.B.1) Question no 1 is compulsory.
 - 2) Figures to the right indicate full marks.
 - 3) Attempt any three from Q2 to Q6.

b) Functions f and g are defined as follows:

$$f: R \to R$$
, $g: R \to R$ $f(x) = 2x + 3$, $g(x) = 3x - 4$.

Find fog and gofog.

c)
$$L\left\langle \frac{d}{dt} \frac{\sin 3t}{t} \right\rangle$$
.

d) Show that there does not exist an analytic function whose real part is $3x^2 - 2x^2y + y^2$.

Q2 a) Evaluate
$$\int_0^\infty e^{-t} \left(\frac{\cos 3t - \cos 2t}{t} \right) dt$$

b) Evaluate
$$L^{-1}\left\{\frac{s}{(s^2+1)(s^2+4)(s^2+9)}\right\}$$

- c) Find bilinear transformation which maps the points Z=1, i,-1 into points W=i, 0, -i. Hence find fixed pts of transformation and the image of |z| < 1.
- Q3 a) If A, B, C are of subsets of universal set U, then prove that

 AX(BUC) = (AXB) U (AXC)
 - b) Let A={1,2,3,6}, B={1,2,3,6,7,14,21,42} and R be the relation 'is divisible by'. O6

 Draw Hasse Diagram for two sets. Show that are posets.
 - c) Find Laplace transform of following functions.

(i)
$$e^{-2t}\sqrt{1-\sin t}$$
 (ii) $te^{-2t}H(t-1)$

- Q4 a) In how many different ways can 4 ladies and 6 gentlemen be seated 06 in a row, so no ladies sit together.
 - b) Find analytic function whose real part is

06

$$\frac{\sin 2x}{\cos h2y + \cos 2x}$$

c) Evaluate inverse Laplace Transform of following functions

- (i) $\frac{1}{(s-3)(s+4)^2}$ by convolution theorem (ii) $\log\left(1+\frac{a^2}{s^2}\right)$
- Q5 a) Solve the following equation by using Laplace transform

06

$$\frac{dy}{dt} + 2y + \int_0^t y dt = \sin t, given that y(0) = 1$$

b) Find p such that the function $\frac{1}{2}\log(x^2+y^2)+i\tan^{-1}\frac{px}{x}$ is analytic.

06

c) For $x, y \in Z$, xRy if and if only 2x + 5y is divisible by 7

80

is R an equivalence relation? Find equivalence relation.

Q6 a) Each coefficient of the equation $ax^2 + bx + c = 0$ is determined by throwing an ordinary die. Find the probability that the equation will have real roots.

06

- b) A certain test for particular cancer is known to be 95% accurate. A person 06 submits to the test and result is positive. Suppose that a person comes from a population of the 1,00,000 where 2000 people suffer from disease. What can we conclude about the probability that person under test has particular cancer?
- c) i) If five points are taken in a square of side 2 units. Show that at least two of

04

them are no more than $\sqrt{2}$ units apart.

ii) How many friends must you have to guarantee that at least five of them have their birthday in same month.