## SEI Sen-III / App. Maths-III / EXTC & INST / May 14

QP Code: NP-18646

## (3 Hours)

[ Total Marks: 80

- N. B.: (1) Question No. 1 (one) is compulsory.
  - (2) Attempt any 3 (three) questions from the remaining questions.
  - (3) Assume suitable data, if necessary.

1. (a) Evaluate 
$$\int_{0}^{\infty} \frac{(\cos 6t - \cos 4t)}{t} dt$$

5

5

(b) Obtain complex form of fourier series for  $f(x) = e^{ax}$  in (-1,1)

5

- (c) Find the work done in moving a particle in a force field given by  $\overline{F} = 3xy\hat{i} 5z\hat{j} + 10x\hat{k}$  along the curve  $x = t^2 + 1$ ,  $y = 2t^2$ ,  $z = t^3$  from t = 1 to t = 2.
- (d) Find the orthogonal trajectory of the curves  $3x^2y + 2x^2 y^3 2y^2 = \alpha$ , where 5  $\alpha$  is a constant.
- 2. (a) Evaluate  $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = \sin t$ , y(0) = 0, y'(0) = 0, by Laplace transform
  - (b) Show that  $J_{\frac{5}{2}} = \sqrt{\frac{2}{\pi x}} \left[ \frac{3 x^2}{x^2} \sin x \frac{3}{x} \cos x \right]$

6

(c) (i) Find the constants a, b, c so that

4

 $\overline{F} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{j} + (4x + (y + 2z)\hat{k}$  is irrotational. (ii) Prove that the angle between two surfaces  $x^2 + y^2 + z^2 = 9$  and

d 4

- $x^2 + y^2 z = 3$  at the point (2,-1,2) is  $\cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$
- 3. (a) Obtain the fourier series of f(x) given by

6

$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ x^2, & 0 \le x \le \pi \end{cases}$$

(b) Find the analytic function f(z) = u + iv where  $u = r^2 \cos 2\theta - r \cos \theta + 2$ 

6

(c) Find Laplace transform of
(i) te<sup>-3t</sup> cos2t.cos3t

8

d [sin 3t]

4. (a) Evaluate  $\int J_3(x) dx$  and Express the result in terms of  $J_0$  and  $J_1$ 

(b) Find half range sine series for  $f(x) = \pi x - x^2 \text{ in } (0, \pi)$ 

Hence deduce that  $\frac{\pi^3}{32} = \frac{1}{12} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$ 



(c) Find inverse Laplace transform of

(i)  $\frac{1}{s} \tanh^{-1}(s)$  (ii)  $\frac{se^{-2s}}{(s^2 + 2s + 2)}$ 



(a) Under the transformation  $w + 2i = z + \frac{1}{z}$ , show that the map of the circle |z| =2 is an ellipse in w-plane.



(b) Find half range cosine series of  $f(x) = \sin x$  in  $0 \le x \le \pi$ . Hence deduce that

 $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$ 

8

(c) Verify Green's theorem, for

 $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy where c is boundary of the region defined$ by x=0, y=0, and x+y=1.

6

(a) Using convolution theorem; evaluate

$$L^{-1} \left\{ \frac{1}{(s-1)(s^2+4)} \right\}$$

(b) Find the bilinear transformation which maps the points  $z = 1, i, -1 \text{ onto } w = 0, 1, \infty$ 

(c) By using the appropriate theorem, Evaluate the following:-

8

(i)  $\overline{F} \cdot cir$  where  $\overline{F} = (2x - y)\hat{i} - (yz^2)\hat{j} - (y^2z)\hat{k}$ 

and c is the boundary of the upper half of the sphere  $x^2 + y^2 + z^2 = 4$ 

(ii)  $\int (9x\hat{i} + 6y\hat{j} - 10z\hat{k}) \cdot d\overline{s}$  where s is

the surface of sphere with radius 2 units.