(3 Hours)

Q.P. Code: 50777

[Total Marks:80]

N.	B.: 1) Question No. 1 is compulsory.	
	2	Attempt any three questions out of the remaining five questions.	
	3	Assume suitable data wherever necessary.	500
1.			20
	a)	Explain how quantization helps in noise removal.	2, 2
	b)	Explain why the local oscillator frequency is always chosen as f_s+f_{IF} and not f_s-f_{IF} ?	
	c)	Explain noise triangle in FM. Determine the everall point forter and point for three considerable and with	0
	d)	Determine the overall noise factor and noise figure for three cascade amplifiers with the following parameters:	AT
		A_1 =6dB, A_2 =15dB A_3 =10dB	0 1
		NF ₁ =10dB NF ₂ =6dB NF ₃ =10dB	7,69
	e)	Calculate percentage saving in AM modulated wave to a depth of 100 percent when the	
		carrier and one of the sidebands are suppressed. Compare AM with SSB-SC.	£ 62.
2.	a)	With the help of a neat bock diagram explain the FM transmitter using Armstrong	5
		method of FM generation.	
	b)	In a super-heterodyne receiver having no RF amplifier, the loaded Q of the antenna	5
		coupling circuit is 100. If the IF is 455kHz, calculate: 1) The image frequency and its	
		rejection ratio for the tuning at 1044kHz. 2) The image frequency and its rejection ratio for the tuning at 30MHz.	
	c)	With a neat block diagram explain the working of super-heterodyne receiver, with	10
	C)	waveforms at the output of each block. Explain the functions of each block.	10
3.	a)	Explain the terms with reference to Radio Receivers: Selectivity, Sensitivity, Fidelity	10
	• `	AGC and Double spotting.	10
	b)	Explain the frequency discriminators with the help of neat diagrams.	10
4.	a)	Explain PAM, PWM and PPM generation with relevant waveforms.	10
	b)	Explain natural sampling and flat top sampling. What is aliasing error? How it can be	10
		overcome?	
	Á		
5.		Derive the expression for the signal to quantization noise ratio in PCM.	5
	b)		5
V DY	199	deviation is 4.8kHz. Calculate the modulation index and the bandwidth required. If the	
2//	V V V	modulating frequency is halved, what is the new bandwidth? Explain the working of Delta Modulation with a neat block diagram and showing	10
	(c)	proper waveforms.	10
6.	a)	Explain FDM with a neat block diagram. Give its applications.	10
3	b)	Draw block diagram of PCM transmitter and receiver and explain the function of each	10
		block	
200	35		
60°C	6,6	*************	