5485
Q.P. Code :
(3 Hours)
[Total Marks : 100
N.B. : (1) Question Number 1 is compulsory.
(2) Attempt any three questions out of remaining five questions.
(3) Assumptions made should be clearly stated.
(4) Figures to the right indicate full marks.
(5) Assume suitable data whenever required but justify the same.

1. (a) Consider the following grammar $G=(V, T, P, S), V=\{S, X\}, T\{0,1$ find productions P are
$S \rightarrow 0|0 \mathrm{X} 1| 01 \mathrm{~S} 1$
. $\mathrm{X} \rightarrow 0 \mathrm{XX} 1 \mid 1 \mathrm{~S}$
S is start symbol. Show that above grammar is ambiguous. Q
(b) State and prove the halting problem. 5
(c) Convert following ε-NFA to NFA without ε.

(d) Prove that Language $L=\left\{0^{\circ} 10^{\circ}\right.$ for $\left.n=0,1,2, \ldots.\right\}$ is not regular.
2. (a) Consider the following grammar $G S(V, T, P, S), V-\{S, X, Y\}, T\{a, b\}$ and productions P are
$S \rightarrow X Y X$
$\mathrm{X} \rightarrow \mathrm{aX} \mid \varepsilon$
$\mathrm{Y} \rightarrow \mathrm{bY} \mid \varepsilon$
Convert this grammar $\frac{\%}{10}$ Chomsky Normal Form (CNF).
(b) Design DPDA to accept language $L=\left\{x \in\{a, b\}^{*} \mid N_{a}(x)>N_{b}(x)\right\}$, 10 $N_{s}(x)>N_{b}(x)$ means number of a's are greater than number of b 's in string x.
3. (a) Design Ting machine to accept the language $L=$ set of strings with equal number of a's and b's.
(b) Design the DFA to accept the language containing all the strings over 10 $8=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ that starts and ends with different symbols.
