N.B. :(1) Question No. one is compulsory.
(2) Answer any three questions from Q. 2 to Q. 6
(3) Use of stastical Tables permitted.
(4) Figures to the right indicate full marks

1. (a) Evaluate the line integral $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path $y=x$
(b) State Cayley-Hamilton theorem \& verify the same for $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$
(c) The probability density function of a random variable x is

x	-2	-1	0	1	2	3
$P(x)$	0.1	k	0.2	2 k	0.3	K

Find 1) k ii) mean iii) variance
(d) Find all the basic solutions to the following problem

$$
\begin{align*}
& \text { Maximize } z=x_{1}+3 x_{2}+3 x_{3} \\
& \text { Subject to } \quad x_{1}+2 x_{2}+3 x_{3}=4 \\
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0 \tag{5}
\end{align*}
$$

2. (a) Find the Eigen values and the Eigen vectors of the matrix $\left[\begin{array}{ccc}4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2\end{array}\right]$
(b) Evaluate $\oint_{c} \frac{d}{z^{3}\left(\frac{2}{2}+4\right)}$ where c is the circle $|z|=2$
(c) If the heights of 500 students is normally distributed with mean 68 inches and standaradeviation of 4 inches, estimate the number of students having heights i) , (iss than 62 inches, ii) between 65 and 71 inches.
3. (a) Calculate the coefficient of correlation from the following data

x	30	33	25	10	33	75	40	85	90	95	65	55
y	68	65	80	85	70	30	55	18	15	10	35	45

(b) In sampling a large number of parts manufactured by a machine, the mean number of defectives in a sample of 20 is 2 . Out of 100 such samples, how many would you expect to contain 3 defectives i) using the Binomial distribution, ii) Poisson distribution.
(c) Show that the matrix $\left[\begin{array}{ccc}-9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7\end{array}\right]$ is diagonalizable. Find the transforming matrix and the diagonal matrix.
4. (a) Fit a Poisson distribution to the following data

x	0	1	2	3	4	5	6	7	8
f	56	156	132	92	37	22	4	0	1

(b) Solve the following LPP using Simples method

$$
\begin{array}{ll}
\text { Maximize } z=6 x_{1}-2 x_{2}+3 x_{3} \\
\text { Subject to } & 2 x_{1}-x_{2}+2 x_{3} \leq 2 \\
& x_{1}+4 x_{3} \leq 4 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

(c) Expand $f(z)=\frac{2}{(z-2)(z-1)}$ in the regions

$$
\text { i) }|z| \leqslant(1) 1<|z|<2, i i i)|z|>2
$$

5. (a) Evaduate using Cauchy's Residue theorem $\oint_{C} \frac{1-2 z}{z(z-1)(z-2)} d z$ where c is

$$
|z|=1.5
$$

(b) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6 . Test at 1% level of significance whether the boys perform better than the girls.
(c) Solve the following LPP using the Dual Simplex method

$$
\begin{array}{lc}
\text { Minimize } z= & 2 x_{1}+2 x_{2}+4 x_{3} \\
\text { Subject to } & 2 x_{1}+3 x_{2}+5 x_{3} \geq 2 \\
& 3 x_{1}+x_{2}+7 x_{3} \leq 3 \\
& x_{1}+4 x_{2}+6 x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \geq 0 . \tag{8}
\end{array}
$$

6. (a) Solve the following NLPP using Kuhn-Tucker conditions

Maximize $z=10 x_{1}+4 x_{2}-2 x_{1}^{2}-x_{2}^{2}$
Subject to $2 x_{1}+x_{2} \leq 5$; and $x_{1}, x_{2} \geq 0$
(b) In an experiment on immunization of cattle from Tuberculosis the following results were obtained

	Affected	Not Affeqted	Total
Inoculated	267	27	294
Not Inoculated	757	155	912
Total	1024	182	1206

Use χ^{2} Test to determine efficacy of vaccine in preventing tuberculosis.
(c) i) The regression linefor a sample are $x+6 y=6$ and $3 x+2 y=10$
find a) sample means \bar{x} and $\bar{y} b$) coefficient of correlation between x and y
ii) If two independent random samples of sizes $15 \& 8$ have respectively the means and population standard deviations as
$x_{x}=980, \tilde{x}_{2}=1012: \sigma_{1}=75, \sigma_{2}=80$
\bigcirc Test the hypothesis that $\mu_{1}=\mu_{2}$ at 5% level of significance.

